Intercellular signaling is critical for the normal development and physiology of the central nervous system (CNS). To study such signaling, it is vital to control where and when the cells make contact with one another. It is also important to determine whether the process used for cell localization has an impact on signaling. This paper describes a technique that controls the location for cell growth in vitro and demonstrates that the technique has minimal (if any) impact on intercellular signaling. By using photolithographic methods, poly(dimethylsiloxane) molds were fabricated to function as templates for micrometer-level patterning of a nonadhesive agar (agarose) onto glass coverslips coated with a cell adhesive film (poly(L-lysine)). This process yields a surface composed of well-defined adhesive and nonadhesive microdomains. When endothelia or astrocytes are plated onto these substrates, confluent domains of endothelia or astrocytes grow on the poly(L-lysine) domains. Cocultures of astrocytes and neurons can also successfully be used to form interwoven networks on the adhesive domains. Moreover, studies of calcium signaling revealed that astrocytes grown on such patterns retain their native physiological activity. This conclusion is based on the observed propagation rate for calcium waves within individual astrocyte domains and across neighboring, but spatially disconnected, astrocyte domains. The potential to apply these micropatterned substrates as platforms for interrogating communication pathways in key components of the CNS is discussed.