Driving nanocars and nanomachines at interfaces: From concept of nanoarchitectonics to actual use in world wide race and hand operation

[1]  Katsuhiko Ariga,et al.  Molecular Recognition of Nucleotides by the Guanidinium Unit at the Surface of Aqueous Micelles and Bilayers. A Comparison of Microscopic and Macroscopic Interfaces , 1996 .

[2]  Satoshi Murata,et al.  Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface. , 2016, Physical chemistry chemical physics : PCCP.

[3]  Jing Pan,et al.  Recent progress on DNA based walkers. , 2015, Current opinion in biotechnology.

[4]  James M Tour,et al.  Synthesis of a nanocar with an angled chassis. Toward circling movement. , 2008, Organic letters.

[5]  Katsuhiko Ariga,et al.  Nanoarchitectonics for Dynamic Functional Materials from Atomic‐/Molecular‐Level Manipulation to Macroscopic Action , 2016, Advanced materials.

[6]  J. Gal,et al.  The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857--a review and analysis 150 yr later. , 2008, Chirality.

[7]  Jun-ichi Kikuchi,et al.  Steroid Cyclophanes as Artificial Cell-surface Receptors. Molecular Recognition and its Consequence in Signal Transduction Behavior , 1998 .

[8]  Katsuhiko Ariga,et al.  Inorganic Nanoarchitectonics for Biological Applications , 2012 .

[9]  Katsuhiko Ariga,et al.  Nanoarchitectonics of molecular aggregates: science and technology. , 2014, Journal of nanoscience and nanotechnology.

[10]  C. Joachim,et al.  Organic Molecules Acting as Templates on Metal Surfaces , 2002, Science.

[11]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[12]  Toshio Yanagida,et al.  Molecular machines like myosin use randomness to behave predictably. , 2014, Chemical reviews.

[13]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[14]  Hidemi Shigekawa,et al.  The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace , 2000 .

[15]  Katsuhiko Ariga,et al.  Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Jane Frommer,et al.  Scanning Tunneling Microscopy and Atomic Force Microscopy in Organic Chemistry , 1992 .

[17]  Christian Joachim,et al.  Fundamental considerations in the manipulation of a single C60 molecule on a surface with an STM , 1997 .

[18]  Katsuhiko Ariga,et al.  Bioinspired nanoarchitectonics as emerging drug delivery systems , 2014 .

[19]  Katsuhiko Ariga,et al.  Evolution of molecular machines: from solution to soft matter interface , 2012 .

[20]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[21]  Y. Norikane,et al.  Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans-cis isomerization of azobenzene. , 2004, Organic letters.

[22]  Francesco Zerbetto,et al.  Influencing intramolecular motion with an alternating electric field , 2000, Nature.

[23]  Samuel Sánchez,et al.  Chemically powered micro- and nanomotors. , 2015, Angewandte Chemie.

[24]  Katsuhiko Ariga,et al.  Bioactive nanocarbon assemblies: Nanoarchitectonics and applications , 2014 .

[25]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[26]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[27]  James M Tour,et al.  Synthetic routes toward carborane-wheeled nanocars. , 2007, The Journal of organic chemistry.

[28]  C. Joachim,et al.  Rolling a single molecular wheel at the atomic scale. , 2007, Nature nanotechnology.

[29]  Joachim,et al.  Nanoscale science of single molecules using local probes , 1999, Science.

[30]  J Klafter,et al.  Atomic scale engines: cars and wheels. , 2000, Physical review letters.

[31]  James M Tour,et al.  En route to surface-bound electric field-driven molecular motors. , 2003, The Journal of organic chemistry.

[32]  Hiroshi Tokumoto,et al.  Lateral forces during manipulation of a single C60 molecule on the Si()-2×1 surface , 2002 .

[33]  Wai-Yeung Wong,et al.  A "molecular pivot-hinge" based on the pH-regulated intramolecular switching of Pt-Pt and pi-pi interactions. , 2006, Journal of the American Chemical Society.

[34]  James M. Tour,et al.  Synthesis of a Light-Driven Motorized Nanocar , 2015 .

[35]  Masakazu Aono,et al.  Nanoarchitectonics: a new materials horizon for nanotechnology , 2015 .

[36]  Akinori Kuzuya,et al.  Nanomechanical molecular devices made of DNA origami. , 2014, Accounts of chemical research.

[37]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[38]  James M Tour,et al.  Surface-rolling molecules. , 2006, Journal of the American Chemical Society.

[39]  E. Purcell Life at Low Reynolds Number , 2008 .

[40]  Satoshi Murata,et al.  In situ 2D-extraction of DNA wheels by 3D through-solution transport. , 2015, Physical chemistry chemical physics : PCCP.

[41]  Ali Meghdari,et al.  A close look at the motion of C60 on gold , 2015 .

[42]  James M. Tour,et al.  Toward chemical propulsion: synthesis of ROMP-propelled nanocars. , 2011, ACS nano.

[43]  Katsuhiko Ariga,et al.  Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. , 2006, Journal of the American Chemical Society.

[44]  Teruo Ono,et al.  Spin-transfer Motor , 2007 .

[45]  Heng-Yi Zhang,et al.  A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms. , 2013, Organic letters.

[46]  Katsuhiko Ariga,et al.  Molecular Recognition at Air−Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction , 1998 .

[47]  Katsuhiko Ariga,et al.  Fullerene nanoarchitectonics: from zero to higher dimensions. , 2013, Chemistry, an Asian journal.

[48]  Kevin F. Kelly,et al.  Adsorption of Fluorinated C60 on the Si(111)-(7×7) Surface Studied by Scanning Tunneling Microscopy and High-Resolution Electron Energy Loss Spectroscopy , 2002 .

[49]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[50]  Mitsuhiko Shionoya,et al.  Rotational Control of a Dirhodium-Centered Supramolecular Four-Gear System by Ligand Exchange. , 2016, Journal of the American Chemical Society.

[51]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[52]  Takashi Sasaki,et al.  Recent progress on nanovehicles. , 2006, Chemical Society reviews.

[53]  Christian Joachim,et al.  The design of a nanoscale molecular barrow , 2002 .

[54]  Itamar Willner,et al.  Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. , 2004, Journal of the American Chemical Society.

[55]  Nathalie Katsonis,et al.  Electrically driven directional motion of a four-wheeled molecule on a metal surface , 2011, Nature.

[56]  Katsuhiko Ariga,et al.  Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution , 2014 .

[57]  Guillaume Vives,et al.  Synthesis of single-molecule nanocars. , 2009, Accounts of chemical research.

[58]  G. Rapenne,et al.  Synthesis of polycyclic aromatic hydrocarbon-based nanovehicles equipped with triptycene wheels. , 2012, Chemistry.

[59]  James M Tour,et al.  Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules. , 2012, ACS nano.

[60]  Tianchao Niu,et al.  Electric-Field-Induced Molecular Switch of Single Dipolar Phthalocyanine on Cu(111): A Scanning Tunneling Microscopy Study , 2015 .

[61]  Katsuhiko Ariga,et al.  Catalytic nanoarchitectonics for environmentally compatible energy generation , 2016 .

[62]  M. Darvish Ganji,et al.  Carborane-wheeled nanocar moving on graphene/graphyne surfaces: van der Waals corrected density functional theory study , 2014 .

[63]  Katsuhiko Ariga,et al.  By what means should nanoscaled materials be constructed: molecule, medium, or human? , 2010, Nanoscale.

[64]  Katsuhiko Ariga,et al.  Monolayers at air-water interfaces: from origins-of-life to nanotechnology. , 2011, Chemical record.

[65]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[66]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[67]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[68]  Katsuhiko Ariga,et al.  25th Anniversary Article: What Can Be Done with the Langmuir‐Blodgett Method? Recent Developments and its Critical Role in Materials Science , 2013, Advanced materials.

[69]  M. Samadizadeh,et al.  Design of a new dihedral-angle-controlled molecular scissors: A DFT investigation , 2015, Journal of Structural Chemistry.

[70]  Yu Wang,et al.  A small molecule walks along a surface between porphyrin fences that are assembled in situ. , 2015, Angewandte Chemie.

[71]  Katsuhiko Ariga,et al.  Piezoluminescence at the air-water interface through dynamic molecular recognition driven by lateral pressure application. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[72]  Bidisa Das,et al.  Molecular wheels on surfaces , 2002 .

[73]  Kenji Kobayashi,et al.  Encapsulated-guest rotation in a self-assembled heterocapsule directed toward a supramolecular gyroscope , 2009, Proceedings of the National Academy of Sciences.

[74]  Ludwig Bartels,et al.  Unidirectional adsorbate motion on a high-symmetry surface: "walking" molecules can stay the course. , 2005, Physical review letters.

[75]  Paul Haake,et al.  Equilibrium constants for association of guanidinium and ammonium ions with oxyanions: The effect of changing basicity of the oxyanion , 1977 .

[76]  James M Tour,et al.  Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nanocars. , 2013, ACS nano.

[77]  James M Tour,et al.  Micrometer-scale translation and monitoring of individual nanocars on glass. , 2009, ACS nano.

[78]  Dominik Horinek,et al.  Dipolar and nonpolar altitudinal molecular rotors mounted on an Au(111) surface. , 2004, Journal of the American Chemical Society.

[79]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[80]  Gabriela Carja,et al.  ZnTiLDH and the Derived Mixed Oxides as Mesoporous Nanoarchitectonics with Photocatalytic Capabilities , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[81]  James M. Tour,et al.  Synthesis of a dipolar nanocar , 2007 .

[82]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[83]  Katsuhiko Ariga,et al.  Theoretical Study of Intermolecular Interaction at the Lipid−Water Interface. 2. Analysis Based on the Poisson−Boltzmann Equation , 1997 .

[84]  Katsuhiko Ariga,et al.  Bridging the Difference to the Billionth-of-a-Meter Length Scale: How to Operate Nanoscopic Machines and Nanomaterials by Using Macroscopic Actions , 2014 .

[85]  James M. Tour,et al.  Synthesis of a fluorescent BODIPY-tagged ROMP catalyst and initial polymerization-propelled diffusion studies , 2015 .

[86]  Katsuhiko Ariga,et al.  A paradigm shift in the field of molecular recognition at the air-water interface: from static to dynamic. , 2006, Soft matter.

[87]  Wesley R. Browne,et al.  Control of surface wettability using tripodal light-activated molecular motors. , 2014, Journal of the American Chemical Society.

[88]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[89]  Katsuhiko Ariga,et al.  What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology , 2016 .

[90]  Junbo Chen,et al.  Enzyme-Powered Three-Dimensional DNA Nanomachine for DNA Walking, Payload Release, and Biosensing. , 2016, ACS nano.

[91]  Katsuhiko Ariga,et al.  Templated Synthesis for Nanoarchitectured Porous Materials , 2015 .

[92]  J. Tour,et al.  Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring , 2015, Nano letters.

[93]  Katsuhiko Ariga,et al.  Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. , 2011, Journal of nanoscience and nanotechnology.

[94]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[95]  Katsuhiko Ariga,et al.  Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air−Water Interface , 2000 .

[96]  Minoru Sakurai,et al.  Theoretical Study of Intermolecular Interaction at the Lipid−Water Interface. 1. Quantum Chemical Analysis Using a Reaction Field Theory , 1997 .

[97]  James M. Tour,et al.  Facile Convergent Route to Molecular Caltrops. , 1999, The Journal of organic chemistry.

[98]  Katsuhiko Ariga,et al.  Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[99]  Katsuhiko Ariga,et al.  Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future , 2015 .

[100]  Katsuhiko Ariga,et al.  Langmuir monolayers of a cholesterol-armed cyclen complex that can control enantioselectivity of amino acid recognition by surface pressure. , 2011, Physical chemistry chemical physics : PCCP.

[101]  Masakazu Aono,et al.  Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development , 2012, Advanced materials.

[102]  Babu Varghese,et al.  Intramolecular pi-stacking interaction in a rigid molecular hinge substituted with 1-(pyrenylethynyl) units. , 2007, The Journal of organic chemistry.

[103]  T. Rahman,et al.  A Molecule Carrier , 2007, Science.

[104]  Darryl Y. Sasaki,et al.  Specific, Multiple-Point Binding of ATP and AMP to a Guanidinium-Functionalized Monolayer , 1991 .

[105]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[106]  Katsuhiko Ariga,et al.  Interfacial nanoarchitectonics: lateral and vertical, static and dynamic. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[107]  Katsuhiko Ariga,et al.  Operation of micro and molecular machines: a new concept with its origins in interface science. , 2011, Physical chemistry chemical physics : PCCP.

[108]  M. Aono,et al.  Forming nanomaterials as layered functional structures toward materials nanoarchitectonics , 2012 .

[109]  Gianaurelio Cuniberti,et al.  Moving nanostructures: pulse-induced positioning of supramolecular assemblies. , 2013, ACS nano.

[110]  Arun Richard Chandrasekaran,et al.  Programmable DNA scaffolds for spatially-ordered protein assembly. , 2016, Nanoscale.

[111]  Katsuhiko Ariga,et al.  Two-dimensional nanofabrication and supramolecular functionality controlled by mechanical stimuli , 2014 .

[112]  Katsuhiko Ariga,et al.  Molecular Recognition of Aqueous Dipeptides at Multiple Hydrogen-Bonding Sites of Mixed Peptide Monolayers , 1996 .

[113]  Yoshitaka Tateyama,et al.  Recent Progress in Interfacial Nanoarchitectonics in Solid-State Batteries , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[114]  E Charles H Sykes,et al.  Electric nanocar equipped with four-wheel drive gets taken for its first spin. , 2012, Angewandte Chemie.

[115]  Christian Joachim,et al.  Molecule concept nanocars: chassis, wheels, and motors? , 2013, ACS nano.

[116]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[117]  Katsuhiko Ariga,et al.  A mechanically controlled indicator displacement assay. , 2012, Angewandte Chemie.

[118]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[119]  Katsuhiko Ariga,et al.  Coordination nanoarchitectonics at interfaces between supramolecular and materials chemistry , 2016 .

[120]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[121]  C Joachim,et al.  Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. , 2001, Physical review letters.

[122]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[123]  Hiroshi Ito,et al.  Molecular recognition: from solution science to nano/materials technology. , 2012, Chemical Society reviews.

[124]  Katsuhiko Ariga,et al.  Chiral Recognition at the Air-Water Interface , 2008 .

[125]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[126]  Katsuhiko Ariga,et al.  Research Update: Mesoporous sensor nanoarchitectonics , 2014 .

[127]  Rekha Goswami Shrestha,et al.  Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals , 2015, Nanotechnology.

[128]  Katsuhiko Ariga,et al.  Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching. , 2015, Nano letters.

[129]  Katsuhiko Ariga,et al.  Molecular cavity nanoarchitectonics for biomedical application and mechanical cavity manipulation , 2016 .

[130]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[131]  Katsuhiko Ariga,et al.  Interfaces Working for Biology: Solving Biological Mysteries and Opening Up Future Nanoarchitectonics , 2016 .

[132]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[133]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[134]  Weihong Tan,et al.  Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. , 2015, Nano letters.

[135]  Yong Jun Li,et al.  Construction of Nanowire Heterojunctions: Photonic Function‐Oriented Nanoarchitectonics , 2016, Advanced materials.

[136]  Christian Joachim,et al.  Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM , 2016 .

[137]  Katsuhiko Ariga,et al.  Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface , 2011, Nanoscale research letters.

[138]  Katsuhiko Ariga,et al.  Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. , 2014, Physical chemistry chemical physics : PCCP.

[139]  Katsuhiko Ariga,et al.  Mechanical tuning of molecular recognition to discriminate the single-methyl-group difference between thymine and uracil. , 2010, Journal of the American Chemical Society.

[140]  Katsuhiko Ariga,et al.  Thin Film Nanoarchitectonics , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[141]  Stefan Hecht,et al.  Welding, organizing, and planting organic molecules on substrate surfaces--promising approaches towards nanoarchitectonics from the bottom up. , 2003, Angewandte Chemie.

[142]  Katsuhiko Ariga,et al.  Control of nano/molecular systems by application of macroscopic mechanical stimuli , 2011 .

[143]  Christian Joachim,et al.  Imaging of a molecular wheelbarrow by scanning tunneling microscopy , 2005 .

[144]  A. Kolomeisky,et al.  Rigid-Body Molecular Dynamics of Fullerene-Based Nanocars on Metallic Surfaces. , 2010, Journal of chemical theory and computation.

[145]  John A. Gladysz,et al.  Gyroscopes and the chemical literature: 1852–2002☆ , 2007 .

[146]  Samuel Sanchez,et al.  Dynamics of biocatalytic microengines mediated by variable friction control. , 2010, Journal of the American Chemical Society.

[147]  Masakazu Aono,et al.  Commentary: Nanoarchitectonics— Think about NANO again , 2015 .

[148]  Kazunori Takada,et al.  Interfacial nanoarchitectonics for solid-state lithium batteries. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[149]  Katsuhiko Ariga,et al.  Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface. , 2015, Angewandte Chemie.

[150]  Christian Joachim,et al.  A rack-and-pinion device at the molecular scale. , 2007, Nature materials.

[151]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[152]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[153]  James M Tour,et al.  En route to a motorized nanocar. , 2006, Organic letters.

[154]  J. K. Gimzewski,et al.  Conformational identification of individual adsorbed molecules with the STM , 1997, Nature.

[155]  Katsuhiko Ariga,et al.  Two-dimensional nanoarchitectonics based on self-assembly. , 2010, Advances in colloid and interface science.

[156]  James M. Tour,et al.  Influence of the Substrate on the Mobility of Individual Nanocars , 2010 .

[157]  Masayuki Endo,et al.  Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy. , 2014, Accounts of chemical research.

[158]  I. Stensgaard,et al.  Properties of large organic molecules on metal surfaces , 2003 .

[159]  K. Ariga,et al.  Nanoarchitectonics for carbon-material-based sensors. , 2016, The Analyst.

[160]  Li Zhang,et al.  Chiral Nanoarchitectonics: Towards the Design, Self‐Assembly, and Function of Nanoscale Chiral Twists and Helices , 2016, Advanced materials.

[161]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[162]  Katsuhiko Ariga,et al.  Nanoarchitectonics for mesoporous materials , 2012 .

[163]  Katsuhiko Ariga,et al.  Enzyme nanoarchitectonics: organization and device application. , 2013, Chemical Society reviews.

[164]  Seiji Shinkai,et al.  Photoresponsive crown ethers. Part 6. Ion transport mediated by photoinduced cis—trans interconversion of azobis(benzocrown ethers) , 1982 .

[165]  Katsuhiko Ariga,et al.  Composite Nanoarchitectonics for Ternary Systems of Reduced Graphene Oxide/Carbon Nanotubes/Nickel Oxide with Enhanced Electrochemical Capacitor Performance , 2015, Journal of Inorganic and Organometallic Polymers and Materials.

[166]  Jean-Pierre Launay,et al.  Technomimetic molecules: synthesis of ruthenium(II) 1,2,3,4,5-penta(p-bromophenyl)cyclopentadienyl hydrotris(indazolyl)borate, an organometallic molecular turnstile. , 2003, Chemical communications.

[167]  Katsuhiko Ariga,et al.  Catching a molecule at the air-water interface: Dynamic pore array for molecular recognition , 2006 .

[168]  Ichimura,et al.  Light-driven motion of liquids on a photoresponsive surface , 2000, Science.

[169]  Song Han,et al.  Nanoarchitectonics for Heterogeneous Integrated Nanosystems , 2008, Proceedings of the IEEE.

[170]  Masakazu Aono,et al.  The Way to Nanoarchitectonics and the Way of Nanoarchitectonics , 2016, Advanced materials.

[171]  Mingjun Xuan,et al.  Self‐Propelled Micro‐/Nanomotors Based on Controlled Assembled Architectures , 2016, Advanced materials.

[172]  James M. Tour,et al.  Synthesis of a nanocar with organometallic wheels , 2009 .

[173]  Takuzo Aida,et al.  Light-driven open-close motion of chiral molecular scissors. , 2003, Journal of the American Chemical Society.

[174]  Katsuhiko Ariga,et al.  Dimensionally integrated nanoarchitectonics for a novel composite from 0D, 1D, and 2D nanomaterials: RGO/CNT/CeO2 ternary nanocomposites with electrochemical performance , 2014 .

[175]  Katsuhiko Ariga,et al.  Mechanical Control of Nanomaterials and Nanosystems , 2012, Advanced materials.

[176]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[177]  Katsuhiko Ariga,et al.  Molecular Recognition of Aqueous Dipeptides by Noncovalently Aligned Oligoglycine Units at the Air/Water Interface , 1995 .

[178]  M. Humphry,et al.  Bond breaking coupled with translation in rolling of covalently bound molecules. , 2005, Physical review letters.

[179]  Yan Liu,et al.  DNA nanotechnology for nanophotonic applications. , 2015, Nanoscale.

[180]  T. Aida,et al.  Mechanical twisting of a guest by a photoresponsive host , 2006, Nature.

[181]  Katsuhiko Ariga,et al.  Materials nanoarchitectonics for environmental remediation and sensing , 2012 .

[182]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.