Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing

[1]  G. Stuart,et al.  The Impact of BK Channels on Cellular Excitability Depends on their Subcellular Location , 2016, Front. Cell. Neurosci..

[2]  Y. Ikegaya,et al.  Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death , 2016, EBioMedicine.

[3]  X. Wehrens,et al.  Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death , 2016, Proceedings of the National Academy of Sciences.

[4]  L. Trussell,et al.  Spontaneous Activity Defines Effective Convergence Ratios in an Inhibitory Circuit , 2016, The Journal of Neuroscience.

[5]  M. Iino,et al.  Visualization of Ca2+ Filling Mechanisms upon Synaptic Inputs in the Endoplasmic Reticulum of Cerebellar Purkinje Cells , 2015, The Journal of Neuroscience.

[6]  J. Trimmer,et al.  Cell type–specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors , 2014, The Journal of comparative neurology.

[7]  L. Trussell,et al.  Chemical synaptic transmission onto superficial stellate cells of the mouse dorsal cochlear nucleus. , 2014, Journal of neurophysiology.

[8]  Christine Grienberger,et al.  NMDA Receptor-Dependent Multidendrite Ca2+ Spikes Required for Hippocampal Burst Firing In Vivo , 2014, Neuron.

[9]  M. D. Benton,et al.  Iberiotoxin-sensitive and -insensitive BK currents in Purkinje neuron somata. , 2013, Journal of neurophysiology.

[10]  Masahiko Watanabe,et al.  Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels , 2013, The Journal of Neuroscience.

[11]  Y. Yanagawa,et al.  Ca(2+)-activated ion currents triggered by ryanodine receptor-mediated Ca(2+) release control firing of inhibitory neurons in the prepositus hypoglossi nucleus. , 2013, Journal of neurophysiology.

[12]  Laurence O Trussell,et al.  The physiology of the axon initial segment. , 2012, Annual review of neuroscience.

[13]  W. N. Ross Understanding calcium waves and sparks in central neurons , 2012, Nature Reviews Neuroscience.

[14]  Greg J. Stuart,et al.  Signal Processing in the Axon Initial Segment , 2012, Neuron.

[15]  Laurence O Trussell,et al.  Control of firing patterns through modulation of axon initial segment T‐type calcium channels , 2012, The Journal of physiology.

[16]  P. Jonas,et al.  Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses , 2011, Nature Reviews Neuroscience.

[17]  Maarten H. P. Kole,et al.  First Node of Ranvier Facilitates High-Frequency Burst Encoding , 2011, Neuron.

[18]  Kevin J. Bender,et al.  Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation , 2010, Neuron.

[19]  Bruce P. Bean,et al.  Sodium Entry during Action Potentials of Mammalian Neurons: Incomplete Inactivation and Reduced Metabolic Efficiency in Fast-Spiking Neurons , 2009, Neuron.

[20]  Jörg R. P. Geiger,et al.  Energy-Efficient Action Potentials in Hippocampal Mossy Fibers , 2009, Science.

[21]  P. Manis,et al.  Two distinct types of inhibition mediated by cartwheel cells in the dorsal cochlear nucleus. , 2009, Journal of neurophysiology.

[22]  R. Shigemoto,et al.  Large‐conductance calcium‐activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains , 2009, The Journal of comparative neurology.

[23]  T. Berger,et al.  Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons , 2009, Pflügers Archiv - European Journal of Physiology.

[24]  L. Trussell,et al.  Axon Initial Segment Ca2+ Channels Influence Action Potential Generation and Timing , 2009, Neuron.

[25]  B. Fakler,et al.  Control of KCa Channels by Calcium Nano/Microdomains , 2008, Neuron.

[26]  L. Trussell,et al.  Fidelity of Complex Spike-Mediated Synaptic Transmission between Inhibitory Interneurons , 2008, The Journal of Neuroscience.

[27]  Yasushi Kishimoto,et al.  Junctophilin‐mediated channel crosstalk essential for cerebellar synaptic plasticity , 2007, The EMBO journal.

[28]  L. Trussell,et al.  Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus. , 2007, Journal of neurophysiology.

[29]  Johannes J. Letzkus,et al.  Requirement of dendritic calcium spikes for induction of spike‐timing‐dependent synaptic plasticity , 2006, The Journal of physiology.

[30]  K. Rhodes,et al.  Immunolocalization of the Ca2+‐activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons , 2006, The Journal of comparative neurology.

[31]  Gautam B. Awatramani,et al.  Modulation of Transmitter Release by Presynaptic Resting Potential and Background Calcium Levels , 2005, Neuron.

[32]  Guohong Cui,et al.  Spontaneous Opening of T-Type Ca2+ Channels Contributes to the Irregular Firing of Dopamine Neurons in Neonatal Rats , 2004, The Journal of Neuroscience.

[33]  L. Trussell,et al.  Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus , 2004, Nature Neuroscience.

[34]  M. Womack,et al.  Dendritic Control of Spontaneous Bursting in Cerebellar Purkinje Cells , 2004, The Journal of Neuroscience.

[35]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[36]  Donata Oertel,et al.  Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Hansel,et al.  The Making of a Complex Spike: Ionic Composition and Plasticity , 2002, Annals of the New York Academy of Sciences.

[38]  D. Cooper,et al.  The significance of action potential bursting in the brain reward circuit , 2002, Neurochemistry International.

[39]  M. Blaustein,et al.  Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores , 2001, Trends in Neurosciences.

[40]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[41]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[42]  A. Tripathy,et al.  Ruthenium Red Modifies the Cardiac and Skeletal Muscle Ca2+ Release Channels (Ryanodine Receptors) by Multiple Mechanisms* , 1999, The Journal of Biological Chemistry.

[43]  J. Patlak,et al.  Functional Coupling of Ryanodine Receptors to KCa Channels in Smooth Muscle Cells from Rat Cerebral Arteries , 1999, The Journal of general physiology.

[44]  K. Fogarty,et al.  The Influence of Sarcoplasmic Reticulum Ca2+ Concentration on Ca2+ Sparks and Spontaneous Transient Outward Currents in Single Smooth Muscle Cells , 1999, The Journal of general physiology.

[45]  Mark J. Thomas,et al.  Postsynaptic Complex Spike Bursting Enables the Induction of LTP by Theta Frequency Synaptic Stimulation , 1998, The Journal of Neuroscience.

[46]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[47]  D. Oertel,et al.  Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[49]  A. Sharp,et al.  Inositol 1,4,5‐trisphosphate receptors: Immunocytochemical localization in the dorsal cochlear nucleus , 1995, The Journal of comparative neurology.

[50]  G. Spirou,et al.  Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus , 1994, The Journal of comparative neurology.

[51]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[52]  Pankaj Sah,et al.  Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role for Ca2+-activated Ca2+ release , 1991, Neuron.

[53]  M. Charlton,et al.  Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  K. Campbell,et al.  Purified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum , 1988, The Journal of general physiology.

[55]  P. Adams,et al.  Spontaneous miniature outward currents in cultured bullfrog neurons , 1987, Brain Research.

[56]  E. Mugnaini,et al.  Cartwheel neurons of the dorsal cochlear nucleus: A Golgi‐electron microscopic study in rat , 1984, The Journal of comparative neurology.

[57]  T. Reese,et al.  Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons , 1976, The Journal of cell biology.

[58]  M. Endo,et al.  Calcium Induced Release of Calcium from the Sarcoplasmic Reticulum of Skinned Skeletal Muscle Fibres , 1970, Nature.

[59]  J. Rosenbluth SUBSURFACE CISTERNS AND THEIR RELATIONSHIP TO THE NEURONAL PLASMA MEMBRANE , 1962, The Journal of cell biology.

[60]  Alexei Verkhratsky,et al.  Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. , 2005, Physiological reviews.

[61]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[62]  R. L. Wood,et al.  Subsurface cisterns in the Purkinje cells of cerebellum of Syrian hamster , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[63]  K. Kuba Ca(2+)-induced Ca2+ release in neurones. , 1994, The Japanese journal of physiology.

[64]  M. Endo,et al.  Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. , 1970, Nature.