2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

[1]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[2]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[3]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[4]  Danzhen Li,et al.  Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants. , 2013, Environmental science & technology.

[5]  Chunming Xu,et al.  Easy synthesis of three-dimensionally ordered macroporous La1−xKxCoO3 catalysts and their high activities for the catalytic combustion of soot , 2011 .

[6]  A. Stein Energy storage: batteries take charge. , 2011, Nature nanotechnology.

[7]  Bruce Dunn,et al.  Three‐Dimensional Battery Architectures , 2004 .

[8]  T. Bein,et al.  Three-dimensional titanium dioxide nanomaterials. , 2014, Chemical reviews.

[9]  C. O’Dwyer,et al.  Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth , 2013, Scientific Reports.

[10]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[11]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[12]  Paul V. Braun,et al.  Programming structure into 3D nanomaterials , 2009 .

[13]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[14]  Yang Zhao,et al.  Advances in Wearable Fiber‐Shaped Lithium‐Ion Batteries , 2016, Advanced materials.

[15]  Ludovico Cademartiri,et al.  Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths , 2006, Nature materials.

[16]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[17]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[18]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[19]  J. Baumberg,et al.  Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting , 2014, Small.

[20]  Danzhen Li,et al.  Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes , 2013 .

[21]  A. Tok,et al.  Inverse opals coupled with nanowires as photoelectrochemical anode , 2012 .

[22]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[23]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[24]  B. Dunn,et al.  Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis , 2008 .

[25]  Priorities for Standards and Measurements to Accelerate Innovations in Nano-Electrotechnologies: Analysis of the NIST-Energetics-IEC TC 113 Survey+,* , 2009, Journal of research of the National Institute of Standards and Technology.

[26]  R. Brydson,et al.  Enhancement of hydrogen production using photoactive nanoparticles on a photochemically inert photonic macroporous support. , 2015, Physical chemistry chemical physics : PCCP.

[27]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[28]  C. O’Dwyer,et al.  Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries. , 2015, ACS applied materials & interfaces.

[29]  Cui,et al.  Structural analysis of a Coulomb lattice in a dusty plasma. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[31]  Colm O'Dwyer,et al.  Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[32]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[33]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[34]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[35]  Martha Schreiber,et al.  Current Collectors for Positive Electrodes of Lithium-Based Batteries , 2005 .

[36]  Dawei Cao,et al.  Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals , 2016 .

[37]  J. V. Sanders,et al.  Ordered arrangements of spheres of two different sizes in opal , 1978, Nature.

[38]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[39]  Brandon R. Long,et al.  Dopant Modulated Li Insertion in Si for Battery Anodes: Theory and Experiment , 2011 .

[40]  Bo Liu,et al.  3D ZnO/Au/CdS Sandwich Structured Inverse Opal as Photoelectrochemical Anode with Improved Performance , 2015 .

[41]  A. Stein,et al.  Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications , 2001 .

[42]  R. Brydson,et al.  Enhanced Photocatalytic Hydrogen Generation Using Polymorphic Macroporous TaON , 2012, Advanced materials.

[43]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[44]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[45]  V. Hessel,et al.  Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels , 2008 .

[46]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[47]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.

[48]  Junling Wang,et al.  Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation , 2015 .

[49]  Shuo Chen,et al.  Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis. , 2010, Environmental science & technology.

[50]  Ali Z. Khokhar,et al.  Modified emission of semiconductor nano-dots in three-dimensional photonic crystals , 2007, IET Circuits Devices Syst..

[51]  P. Schmuki,et al.  Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes , 2011 .

[52]  Michael Schmidt,et al.  Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching Mechanism , 2014 .

[53]  S. John,et al.  PhD TUTORIAL: Coherent control of spontaneous emission near a photonic band edge , 2003 .

[54]  Meng Gu,et al.  Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. , 2013, ACS nano.

[55]  Xi‐Wen Du,et al.  A stable inverse opal structure of cadmium chalcogenide for efficient water splitting , 2015 .

[56]  D. Bahnemann,et al.  Inverse Opal Photonic Crystals as a Strategy to Improve Photocatalysis: Underexplored Questions. , 2015, The journal of physical chemistry letters.

[57]  Jung-Soo Lee,et al.  Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene. , 2014, ACS applied materials & interfaces.

[58]  G. Guan,et al.  Catalytic combustion of methane over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor , 2008 .

[59]  A. Stein,et al.  Design and Functionality of Colloidal‐Crystal‐Templated Materials—Chemical Applications of Inverse Opals , 2013 .

[60]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[61]  Colm O'Dwyer,et al.  3D vanadium oxide inverse opal growth by electrodeposition , 2015 .

[62]  C. O’Dwyer,et al.  Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance , 2014 .

[63]  Jian Liu,et al.  The catalysts of three-dimensionally ordered macroporous Ce1−xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction , 2012 .

[64]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[65]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[66]  Isobel J. Davidson,et al.  Nanotechnology for Lithium-Ion Batteries , 2013 .

[67]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[68]  D. Sun-Waterhouse,et al.  Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals , 2015 .

[69]  C. O’Dwyer,et al.  Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage , 2015 .

[70]  M. Armand,et al.  Building better batteries , 2008, Nature.

[71]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[72]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[73]  G. Ozin,et al.  Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. , 2008, Journal of the American Chemical Society.

[74]  Yi Cui,et al.  Thin, flexible secondary Li-ion paper batteries. , 2010, ACS nano.

[75]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[76]  Ying Wang,et al.  Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation , 2006 .

[77]  I. Povey,et al.  Understanding of transmission in the range of high-order photonic bands in thin opal film , 2008 .

[78]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[79]  Junling Wang,et al.  Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity , 2014 .

[80]  J. Moon,et al.  Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. , 2012, Chemical communications.

[81]  M. Eich,et al.  Photonic properties of titania inverse opal heterostructures , 2013 .

[82]  J. Holmes,et al.  Three-Dimensionally Ordered Hierarchically Porous Tin Dioxide Inverse Opals and Immobilization of Palladium Nanoparticles for Catalytic Applications , 2013 .

[83]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[84]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[85]  Kwang-soon Ahn,et al.  Role of WO3 Layers Electrodeposited on SnO2 Inverse Opal Skeletons in Photoelectrochemical Water Splitting , 2016 .

[86]  Geoffrey A. Ozin,et al.  Self‐Assembled Surface Patterns of Binary Colloidal Crystals , 2003 .

[87]  V. Reboud,et al.  Inline metrology configuration for sub-wavelength diffraction using microscope optics , 2009 .

[88]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[89]  Shaomin Liu,et al.  Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance , 2012 .

[90]  G. Boschloo,et al.  Porous One‐Dimensional Photonic Crystals Improve the Power‐Conversion Efficiency of Dye‐Sensitized Solar Cells , 2009 .

[91]  M. Nathan,et al.  Electroless nickel current collector for 3D-microbatteries , 2010 .

[92]  Lianxi Zheng,et al.  Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting. , 2014, ACS applied materials & interfaces.

[93]  C. S. Sotomayor Torres,et al.  Ordered 2D colloidal photonic crystals on gold substrates by surfactant-assisted fast-rate dip coating. , 2014, Small.

[94]  B. Su,et al.  Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement , 2014 .

[95]  Michael Schmidt,et al.  The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions. , 2014, Angewandte Chemie.

[96]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[97]  Thomas K. Gaylord,et al.  Planar dielectric grating diffraction theories , 1982 .

[98]  Dong Ha Kim,et al.  Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution. , 2013, ACS applied materials & interfaces.

[99]  Danzhen Li,et al.  A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity , 2014 .

[100]  C. O’Dwyer Color‐Coded Batteries – Electro‐Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics , 2016, Advanced materials.

[101]  Sébastien R Mouchet,et al.  Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption? , 2015, Physical chemistry chemical physics : PCCP.

[102]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[103]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[104]  Jaeyeong Heo,et al.  Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting. , 2015, ACS applied materials & interfaces.

[105]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[106]  G. Ozin,et al.  Tracing the Effect of Slow Photons in Photoisomerization of Azobenzene , 2008 .

[107]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[108]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[109]  André C. Arsenault,et al.  Nanochemistry: A Chemical Approach to Nanomaterials , 2005 .

[110]  N. Lewis,et al.  Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes. , 2014, Nano letters.

[111]  Ji‐Hyun Jang,et al.  Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2 , 2013, Scientific Reports.

[112]  T. Sakai,et al.  Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector , 2010 .

[113]  X. Lou,et al.  Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. , 2013, Angewandte Chemie.

[114]  Seung Il Cho,et al.  Nanotube‐Based Ultrafast Electrochromic Display , 2005 .

[115]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[116]  Xingjiu Huang,et al.  Hydrothermal Fabrication of Three‐Dimensional Secondary Battery Anodes , 2014, Advanced materials.

[117]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[118]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[119]  C. O’Dwyer,et al.  High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes , 2016 .

[120]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[121]  J. Moon,et al.  Double-Deck Inverse Opal Photoanodes: Efficient Light Absorption and Charge Separation in Heterojunction , 2014 .

[122]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[123]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[124]  C. O’Dwyer,et al.  2D and 3D vanadium oxide inverse opals and hollow sphere arrays , 2014 .

[125]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[126]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[127]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[128]  J. S. Lee,et al.  Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting. , 2013, Nanoscale.

[129]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[130]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[131]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[132]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[133]  Young-Min Choi,et al.  A Ge inverse opal with porous walls as an anode for lithium ion batteries , 2012 .

[134]  Yao Li,et al.  Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films , 2014 .

[135]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[136]  N. Sandhyarani,et al.  Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis. , 2015, Nanoscale.

[137]  B. Su,et al.  Three-dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency. , 2011, ChemSusChem.

[138]  C. O’Dwyer Stretching the performance of wearable Li-ion batteries , 2014 .

[139]  Shuo Chen,et al.  Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. , 2012, Environmental science & technology.

[140]  Georg von Freymann,et al.  Slow photons in the fast lane in chemistry , 2008 .

[141]  O. Lotty,et al.  The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces , 2014 .

[142]  Hiroyuki Nishide,et al.  Toward Flexible Batteries , 2008, Science.

[143]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[144]  Xiujian Zhao,et al.  Facile Fabrication of 3D-Ordered Macroporous Nanocrystalline Iron Oxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity , 2010 .

[145]  E. O’Reilly,et al.  Noise‐Assisted Crystallization of Opal Films , 2012 .

[146]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[147]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .