Application of Deep Learning Architectures for Accurate Detection of Olive Tree Flowering Phenophase

[1]  Muhammad Burhan Khan,et al.  Image segmentation of activated sludge phase contrast images using phase stretch transform. , 2018, Microscopy.

[2]  C. Galán,et al.  Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region , 2015, International Journal of Biometeorology.

[3]  C. Galán,et al.  Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). , 2005, Annals of agricultural and environmental medicine : AAEM.

[4]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Andreas Kamilaris,et al.  Deep learning in agriculture: A survey , 2018, Comput. Electron. Agric..

[6]  Jose Oteros,et al.  Modelling olive phenological response to weather and topography , 2013 .

[7]  Paolo Bàrberi,et al.  Eight principles of integrated pest management , 2015, Agronomy for Sustainable Development.

[8]  Sanyi Tang,et al.  Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases. , 2010, Journal of theoretical biology.

[9]  Bahram Jalali,et al.  Edge Detection in Digital Images Using Dispersive Phase Stretch Transform , 2015, Int. J. Biomed. Imaging.

[10]  R. Pérez-Badia,et al.  Models for forecasting the flowering of Cornicabra olive groves , 2015, International Journal of Biometeorology.

[11]  J. Pereira,et al.  Towards sustainable control of Lepidopterous pests in olive cultivation , 2005, Gesunde Pflanzen.

[12]  Denis-Didier Rousseau,et al.  Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling , 1999 .

[13]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[14]  Luigi Ponti,et al.  Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy , 2009 .

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  F. Woodward,et al.  Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean , 2000 .

[17]  F. Villalobos,et al.  Modelling olive flowering date using chilling for dormancy release and thermal time , 2004 .

[18]  C. Galán,et al.  Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis , 2009 .