Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response models.

Multidimensionality is a core concept in the measurement and analysis of psychological data. In personality assessment, for example, constructs are mostly theoretically defined as unidimensional, yet responses collected from the real world are almost always determined by multiple factors. Significant research efforts have concentrated on the use of simulated studies to evaluate the robustness of unidimensional item response models when applied to multidimensional data with a dominant dimension. In contrast, in the present paper, I report the result from a theoretical investigation that a multidimensional item response model is empirically indistinguishable from a locally dependent unidimensional model, of which the single dimension represents the actual construct of interest. A practical implication of this result is that multidimensional response data do not automatically require the use of multidimensional models. Circumstances under which the alternative approach of locally dependent unidimensional models may be useful are discussed.

[1]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[2]  Francis Tuerlinckx,et al.  Copula Functions for Residual Dependency , 2007 .

[3]  Robert J. Jannarone,et al.  Conjunctive item response theory kernels , 1986 .

[4]  A. L. Rae,et al.  The analysis of binomial data by a generalized linear mixed model , 1985 .

[5]  Terry A. Ackerman Unidimensional IRT Calibration of Compensatory and Noncompensatory Multidimensional Items , 1989 .

[6]  E. Perfetto,et al.  Applying item response theory to enhance health outcomes assessment , 2007, Quality of Life Research.

[7]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[8]  Steven P. Reise,et al.  The role of the bifactor model in resolving dimensionality issues in health outcomes measures , 2007, Quality of Life Research.

[9]  Edward H. Ip,et al.  Adjusting for information inflation due to local dependency in moderately large item clusters , 2000 .

[10]  R. Meijer,et al.  Analyzing psychopathology items: a case for nonparametric item response theory modeling. , 2004, Psychological methods.

[11]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[12]  Paul De Boeck,et al.  A parametric model for local dependence among test items. , 1997 .

[13]  Stephen Rapp,et al.  Qualitative longitudinal analysis of symptoms in patients with primary and metastatic brain tumours , 2008, Journal of the Royal Statistical Society. Series A,.

[14]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[15]  Mark D. Reckase,et al.  The Discriminating Power of Items That Measure More Than One Dimension , 1991 .

[16]  Roderick P. McDonald,et al.  The dimensionality of tests and items , 1981 .

[17]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[18]  Bengt Muthén,et al.  Latent variable modeling in heterogeneous populations , 1989 .

[19]  Fumiko Samejima,et al.  Normal ogive model on the continuous response level in the multidimensional latent space , 1974 .

[20]  K. Holzinger,et al.  The Bi-factor method , 1937 .

[21]  K Y Liang,et al.  Longitudinal data analysis for discrete and continuous outcomes. , 1986, Biometrics.

[22]  Harvey Goldstein,et al.  Five decades of item response modelling , 1989 .

[23]  R. Lennox,et al.  Conventional wisdom on measurement: A structural equation perspective. , 1991 .

[24]  Francis Tuerlinckx,et al.  A nonlinear mixed model framework for item response theory. , 2003, Psychological methods.

[25]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[26]  I. Goodyer,et al.  The Short Mood and Feelings Questionnaire (SMFQ): A Unidimensional Item Response Theory and Categorical Data Factor Analysis of Self-Report Ratings from a Community Sample of 7-through 11-Year-Old Children , 2006, Journal of abnormal child psychology.

[27]  D. Ozer Four principles for personality assessment. , 1999 .

[28]  Older adults' desire for physical competence. , 2006, Medicine and science in sports and exercise.

[29]  Cornelis A.W. Glas,et al.  A dynamic generalization of the Rasch model , 1993 .

[30]  Hae-Rim Kim New techniques for the dimensionality assessment of standardized test data , 1994 .

[31]  Daniel O. Segall,et al.  Multidimensional adaptive testing , 1996 .

[32]  Donald Hedeker,et al.  Full-information item bi-factor analysis , 1992 .

[33]  Eric T. Bradlow,et al.  A Bayesian random effects model for testlets , 1999 .

[34]  C. Parsons,et al.  Application of Unidimensional Item Response Theory Models to Multidimensional Data , 1983 .

[35]  C. Spearman The factor theory and its troubles. III. Misrepresentation of the theory. , 1933 .

[36]  L. Humphreys An analysis and evaluation of test and item bias in the prediction context. , 1986 .

[37]  R. Gibbons,et al.  The Added Value of Multidimensional IRT Models , 2007 .

[38]  Edward H. Ip,et al.  Locally dependent latent trait model and the dutch identity revisited , 2002 .

[39]  Eric T. Bradlow,et al.  Testlet Response Theory and Its Applications , 2007 .

[40]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[41]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[42]  Wen-Chung Wang,et al.  Exploring Local Item Dependence Using a Random-Effects Facet Model , 2005 .

[43]  Walter D. Way,et al.  The Comparative Effects of Compensatory and Noncompensatory Two-Dimensional Data on Unidimensional IRT Estimates , 1988 .

[44]  Brian Habing,et al.  Conditional Covariance-Based Nonparametric Multidimensionality Assessment , 1996 .

[45]  G. Rasch,et al.  An item analysis which takes individual differences into account. , 1966, The British journal of mathematical and statistical psychology.

[46]  N. L. Johnson,et al.  Continuous Univariate Distributions.Vol. 1@@@Continuous Univariate Distributions.Vol. 2 , 1995 .

[47]  Karim M. Abadir,et al.  Matrix Algebra: Notation , 2005 .

[48]  Raymond B. Cattell,et al.  Psychological Theory and Scientific Method , 1988 .

[49]  S. Embretson,et al.  Item response theory for psychologists , 2000 .

[50]  Brian Caffo,et al.  Flexible random intercept models for binary outcomes using mixtures of normals , 2007, Comput. Stat. Data Anal..

[51]  Sun-Joo Cho,et al.  Explanatory Item Response Models , 2004 .

[52]  S. Natasha Beretvas,et al.  Comparing Multidimensional and Unidimensional Proficiency Classifications: Multidimensional IRT as a Diagnostic Aid , 2003 .

[53]  Mark D. Reckase,et al.  A Linear Logistic Multidimensional Model for Dichotomous Item Response Data , 1997 .

[54]  S. Spencer THE STRENGTH OF MULTIDIMENSIONAL ITEM RESPONSE THEORY IN EXPLORING CONSTRUCT SPACE THAT IS MULTIDIMENSIONAL AND CORRELATED , 2004 .

[55]  M. Reckase Unifactor Latent Trait Models Applied to Multifactor Tests: Results and Implications , 1979 .

[56]  Edward H. Ip,et al.  Locally dependent latent trait model for polytomous responses with application to inventory of hostility , 2004 .

[57]  Wendy M. Yen,et al.  Scaling Performance Assessments: Strategies for Managing Local Item Dependence , 1993 .

[58]  Daniel M. Bolt,et al.  A Comparison of Alternative Models for Testlets , 2006 .

[59]  P. De Boeck,et al.  Locally Dependent Linear Logistic Test Model With Person Covariates , 2009 .

[60]  L. Kirisci,et al.  Robustness of Item Parameter Estimation Programs to Assumptions of Unidimensionality and Normality , 2001 .

[61]  David A. Harrison,et al.  Robustness of Irt Parameter Estimation to Violations of The Unidimensionality Assumption , 1986 .

[62]  Bert F. Green,et al.  Adaptive Estimation When the Unidimensionality Assumption of IRT is Violated , 1989 .

[63]  R. Pintner,et al.  Crossroads in the Mind of Man: A Study of Differentiable Mental Abilities. , 1929 .

[64]  Furong Gao,et al.  Investigating Local Dependence With Conditional Covariance Functions , 1998 .

[65]  Raymond J. Adams,et al.  Rasch models for item bundles , 1995 .

[66]  Edward H. Ip,et al.  Empirical Bayes and Item-Clustering Effects in a Latent Variable Hierarchical Model , 2002 .

[67]  Robert A. Forsyth,et al.  An Examination of the Characteristics of Unidimensional IRT Parameter Estimates Derived From Two-Dimensional Data , 1985 .

[68]  J. Ware,et al.  Applied Longitudinal Analysis , 2004 .

[69]  Beth A Reboussin,et al.  Locally dependent latent class models with covariates: an application to under‐age drinking in the USA , 2008, Journal of the Royal Statistical Society. Series A,.