Multimedia Search with Pseudo-relevance Feedback

We present an algorithm for video retrieval that fuses the decisions of multiple retrieval agents in both text and image modalities. While the normalization and combination of evidence is novel, this paper emphasizes the successful use of negative pseudorelevance feedback to improve image retrieval performance. Although we have not solved all problems in video information retrieval, the results are encouraging, indicating that pseudo-relevance feedback shows great promise for multimedia retrieval with very varied and errorful data.

[1]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[2]  Vipin Kumar,et al.  Predicting rare classes: can boosting make any weak learner strong? , 2002, KDD.

[3]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[4]  Jean Tague-Sutcliffe,et al.  The Pragmatics of Information Retrieval Experimentation Revisited , 1997, Inf. Process. Manag..

[5]  Richard M. Stern,et al.  Speech in Noisy Environments: robust automatic segmentation, feature extraction, and hypothesis combination , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[6]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[7]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[9]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[10]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[11]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[12]  Jean M. Tague,et al.  The pragmatics of information retrieval experimentation , 1981 .

[13]  Frann Cois Denis,et al.  PAC Learning from Positive Statistical Queries , 1998, ALT.

[14]  Rong Yan,et al.  On predicting rare classes with SVM ensembles in scene classification , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[15]  Alberto Del Bimbo,et al.  Visual information retrieval , 1999 .

[16]  Stephen E. Robertson,et al.  Okapi at TREC-4 , 1995, TREC.

[17]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Yihong Gong,et al.  Lessons Learned from Building a Terabyte Digital Video Library , 1999, Computer.

[19]  Yan Gong,et al.  Intelligent image databases - towards advanced image retrieval , 1997, The Kluwer international series in engineering and computer science.

[20]  Jianying Hu,et al.  Matching and retrieval based on the vocabulary and grammar of color patterns , 2000, IEEE Trans. Image Process..

[21]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification and Regression , 1995, NIPS.

[22]  Yiming Yang,et al.  Translingual Information Retrieval: A Comparative Evaluation , 1997, IJCAI.

[23]  Ellen K. Hughes,et al.  Video OCR for digital news archive , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[24]  François Denis PAC Learning from Positive Statistical Queries , 1998, ALT.

[25]  Qi Tian,et al.  Discriminant-EM algorithm with application to image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.