Asymptotic Properties of Lasso+mLS and Lasso+Ridge in Sparse High-dimensional Linear Regression
暂无分享,去创建一个
[1] W. Massy. Principal Components Regression in Exploratory Statistical Research , 1965 .
[2] W. R. van Zwet,et al. Asymptotic Expansions for the Power of Distributionfree Tests in the Two-Sample Problem , 1976 .
[3] D. Freedman,et al. Some Asymptotic Theory for the Bootstrap , 1981 .
[4] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[5] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[6] J. A. Cuesta-Albertos,et al. Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests , 2000 .
[7] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[8] M. R. Osborne,et al. On the LASSO and its Dual , 2000 .
[9] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[10] J. Fox. Bootstrapping Regression Models , 2002 .
[11] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[12] Joel A. Tropp,et al. Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.
[13] Y. Ritov,et al. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization , 2004 .
[14] Jean-Jacques Fuchs,et al. Recovery of exact sparse representations in the presence of noise , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[15] B. M. Pötscher,et al. MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.
[16] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[17] Jianqing Fan,et al. Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.
[18] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[19] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[20] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[21] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[22] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[23] Benedikt M. Potscher,et al. On the distribution of the adaptive LASSO estimator , 2008, 0801.4627.
[24] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[25] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[26] Nicolai Meinshausen,et al. Relaxed Lasso , 2007, Comput. Stat. Data Anal..
[27] A. Tsybakov,et al. Sparsity oracle inequalities for the Lasso , 2007, 0705.3308.
[28] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[29] S. Geer. HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.
[30] Karim Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators , 2008, 0801.4610.
[31] Cun-Hui Zhang,et al. Adaptive Lasso for sparse high-dimensional regression models , 2008 .
[32] N. Meinshausen,et al. Stability selection , 2008, 0809.2932.
[33] F. Bunea. Honest variable selection in linear and logistic regression models via $\ell_1$ and $\ell_1+\ell_2$ penalization , 2008, 0808.4051.
[34] P. Bickel,et al. BOOTSTRAPPING REGRESSION MODELS WITH MANY PARAMETERS , 2008 .
[35] Francis R. Bach,et al. Bolasso: model consistent Lasso estimation through the bootstrap , 2008, ICML '08.
[36] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[37] J. Horowitz,et al. Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.
[38] F. Bunea. Honest variable selection in linear and logistic regression models via $\ell_1$ and $\ell_1+\ell_2$ penalization , 2008, 0808.4051.
[39] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[40] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[41] A. Belloni,et al. Least Squares After Model Selection in High-Dimensional Sparse Models , 2009, 1001.0188.
[42] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[43] Jinchi Lv,et al. A unified approach to model selection and sparse recovery using regularized least squares , 2009, 0905.3573.
[44] Tesi di Dottorato,et al. Penalized Regression: bootstrap confidence intervals and variable selection for high dimensional data sets. , 2010 .
[45] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[46] Lu Tian,et al. A Perturbation Method for Inference on Regularized Regression Estimates , 2011, Journal of the American Statistical Association.
[47] Victor Chernozhukov,et al. Inference on Treatment Effects after Selection Amongst High-Dimensional Controls , 2011 .
[48] Cun-Hui Zhang,et al. Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.
[49] S. Lahiri,et al. Bootstrapping Lasso Estimators , 2011 .
[50] A. Belloni,et al. Inference for High-Dimensional Sparse Econometric Models , 2011, 1201.0220.
[51] Lin Lu,et al. Model selection consistency of Dantzig selector , 2013 .
[52] Adel Javanmard,et al. Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition , 2013, NIPS.
[53] S. Lahiri,et al. Rates of convergence of the Adaptive LASSO estimators to the Oracle distribution and higher order refinements by the bootstrap , 2013, 1307.1952.