Identifying Users with Wearable Sensors based on Activity Patterns

Abstract We live in a world where ubiquitous systems surround us in the form of automated homes, smart appliances and wearable devices. These ubiquitous systems not only enhance productivity but can also provide assistance given a variety of different scenarios. However, these systems are vulnerable to the risk of unauthorized access, hence the ability to authenticate the end-user seamlessly and securely is important. This paper presents an approach for user identification given the physical activity patterns captured using on-body wearable sensors, such as accelerometer, gyroscope, and magnetometer. Three machine learning classifiers have been used to discover the activity patterns of users given the data captured from wearable sensors. The recognition results prove that the proposed scheme can effectively recognize a user’s identity based on his/her daily living physical activity patterns.