SU-8 Photolithography as a Toolbox for Carbon MEMS

The use of SU-8 as precursor for glass-like carbon, or glassy carbon, is presented here. SU-8 carbonizes when subject to high temperature under inert atmosphere. Although epoxy-based precursors can be patterned in a variety of ways, photolithography is chosen due to its resolution and reproducibility. Here, a number of improvements to traditional photolithography are introduced to increase the versatility of the process. The shrinkage of SU-8 during carbonization is then detailed as one of the guidelines necessary to design carbon patterns. A couple of applications—(1) carbon-electrode dielectrophoresis for bioparticle manipulation; and (2) the use of carbon structures as micro-molds are also presented.

[1]  A. Desai,et al.  Thermoplastic Forming of Bulk Metallic Glass— A Technology for MEMS and Microstructure Fabrication , 2007, Journal of Microelectromechanical Systems.

[2]  Marc Madou,et al.  Photoresist‐Derived Carbon for Microelectromechanical Systems and Electrochemical Applications , 2000 .

[3]  Jun Zhang,et al.  Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. , 2004, Lab on a chip.

[4]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[5]  A. Yoshida,et al.  Graphitization behavior of Kapton-derived carbon film related to structure, microtexture and transport properties , 1997 .

[6]  R. K. Aggarwal,et al.  Conversion of phenol formaldehyde resin to glass-like carbon , 1984 .

[7]  W. S. Rothwell Small‐Angle X‐Ray Scattering from Glassy Carbon , 1968 .

[8]  S. Tsuge,et al.  Studies on thermal degradation of epoxy resins by high-resolution pyrolysis-gas chromatography , 1987 .

[9]  Marc Madou,et al.  Electrical Properties and Shrinkage of Carbonized Photoresist Films and the Implications for Carbon Microelectromechanical Systems Devices in Conductive Media , 2005 .

[10]  Nam-Trung Nguyen,et al.  SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems , 2007, Electrophoresis.

[11]  A. Lyons,et al.  Thin pinhole-free carbon films , 1983 .

[12]  Doped glassy carbon materials (DGC) : their synthesis from polymeric precursors and investigation of their properties , 1990 .

[13]  Marc J Madou,et al.  The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. , 2010, Lab on a chip.

[14]  L. A. Pesin,et al.  A new structural model of glass-like carbon , 2002 .

[15]  Marc J Madou,et al.  A novel approach to dielectrophoresis using carbon electrodes , 2011, Electrophoresis.

[16]  Kang-Shin Chen,et al.  Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere , 1996 .

[17]  T. Dillon,et al.  Fabrication and characterization of three-dimensional silicon tapers. , 2003, Optics express.

[18]  D. A. Shirley,et al.  X-ray photoemission studies of diamond, graphite, and glassy carbon valence bands , 1974 .

[19]  Erich Fitzer,et al.  The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin , 1969 .

[20]  K. Nishikawa,et al.  Structure Change of Glass-like Carbon with Heat Treatment, Studied by Small Angle X-Ray Scattering: I. Glass-like Carbon Prepared from Phenolic Resin , 1998 .

[21]  K. Kawamura,et al.  Formation and structure of polymeric carbons , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  L. A. Pesin Review Structure and properties of glass-like carbon , 2002 .

[23]  Stéphane Colin,et al.  A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films , 2005 .

[24]  Alexandra Ros,et al.  Dielectrophoresis of lambda‐DNA using 3D carbon electrodes , 2013, Electrophoresis.

[25]  P. Renaud,et al.  Increasing PCR sensitivity by removal of polymerase inhibitors in environmental samples by using dielectrophoresis. , 2013, Biosensors & bioelectronics.

[26]  P. Reiser,et al.  New Forms of Carbon , 1970 .

[27]  Antonio Juárez,et al.  On‐line separation of bacterial cells by carbon‐electrode dielectrophoresis , 2010, Electrophoresis.

[28]  Yong-Kyu Yoon,et al.  Multidirectional UV Lithography for Complex 3-D MEMS Structures , 2006, Journal of Microelectromechanical Systems.

[29]  Marc Madou,et al.  SU-8 Photolithography and Its Impact on Microfluidics , 2011 .

[30]  SHIGEHIKO YAMADA,et al.  Some Physical Properties of Glassy Carbon , 1962, Nature.

[31]  W. E. Van Der Linden,et al.  Glassy carbon as electrode material in electro- analytical chemistry , 1980 .

[32]  Rodrigo Martinez-Duarte,et al.  Microfabrication technologies in dielectrophoresis applications—A review , 2012, Electrophoresis.

[33]  Jeong-Il Heo,et al.  Carbon Interdigitated Array Nanoelectrodes for Electrochemical Applications , 2011 .

[34]  J. Kakinoki A model for the structure of `glassy carbon' , 1965 .

[35]  Hubert Lorenz,et al.  3D microfabrication by combining microstereolithography and thick resist UV lithography , 1999 .

[36]  S. Kimura,et al.  Glass-like carbon made from epoxy resin cured with 2,4,6-trinitrophenol , 1983 .

[38]  K. Kawamura,et al.  Structure of Glassy Carbon , 1971, Nature.

[39]  M. Madou,et al.  A novel method for the fabrication of high-aspect ratio C-MEMS structures , 2005, Journal of Microelectromechanical Systems.

[40]  E. Fitzer,et al.  The effect of crosslinking on the formation of glasslike carbons from thermosetting resins , 1970 .

[41]  Shu Yang,et al.  Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures , 2004 .

[42]  Ren Yang,et al.  A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures , 2005 .

[43]  H. Zittel,et al.  A GLASSY-CARBON ELECTRODE FOR VOLTAMMETRY , 1965 .

[44]  Anja Boisen,et al.  Fabrication of high-aspect ratio SU-8 micropillar arrays , 2012 .

[45]  George M. Whitesides,et al.  Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors , 1997 .

[46]  Kiyoshi Kawamura,et al.  Polymeric Carbons: Carbon Fibre, Glass and Char , 1976 .

[47]  Marc Madou,et al.  Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries , 2008 .

[48]  E. Fitzer,et al.  Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995) , 1995 .

[49]  L. Lee Mechanisms of thermal degradation of phenolic condensation polymers. II. Thermal stability and degradation schemes of epoxy resins , 1965 .

[50]  M. Telford The case for bulk metallic glass , 2004 .

[51]  Rodrigo Martinez Duarte Label-free cell sorting using carbon-electrode dielectrophoresis and centrifugal microfluidics , 2010 .

[52]  Makarand Paranjape,et al.  Fabricating multilevel SU-8 structures in a single photolithographic step using colored masking patterns , 2006 .

[53]  Y. Kaburagi,et al.  Microtexture and magnetoresistance of glass-like carbons , 1991 .

[54]  M. Madou,et al.  Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis , 2006 .

[55]  M. Madou,et al.  One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8 , 2011 .

[56]  C. Greiner,et al.  SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography , 2007 .

[57]  Chunlei Wang,et al.  Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors , 2011 .

[58]  Philippe Renaud,et al.  Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices , 2012, Micromachines.

[59]  R. Bragg,et al.  Effect of heat treatment temperature (HTT) on density, weight and volume of glass-like carbon (GC) , 1983 .

[60]  S. Benson,et al.  Thermal degradation of nadic methyl anhydride‐cured epoxy novolac , 1970 .

[61]  F. Tseng,et al.  Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination , 2002 .

[62]  Marc Madou,et al.  From MEMS to NEMS with carbon. , 2005, Biosensors & bioelectronics.

[63]  G. Whitesides,et al.  Bis-o-diynylarene (BODA) Derived Polynaphthalenes as Precursors to Glassy Carbon Microstructures , 1999 .

[64]  Toshiyuki Tsuchiya,et al.  Moving mask UV lithography for three-dimensional structuring , 2007 .

[65]  W. Johnson Bulk amorphous metal—An emerging engineering material , 2002 .

[66]  Rodrigo Martinez-Duarte,et al.  Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations. , 2014, Lab on a chip.

[67]  Sheikh A. Akbar,et al.  Pyrolysis of Negative Photoresists to Fabricate Carbon Structures for Microelectromechanical Systems and Electrochemical Applications , 2002 .

[68]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .