FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta

We present a fluid–structure interaction (FSI) analysis of the blood flow and geometrical characteristics in the thoracic aorta. The FSI is handled with the sequentially-coupled arterial FSI technique. The fluid mechanics equations are solved with the ST-VMS method, which is the variational multiscale version of the deforming-spatial-domain/stabilized space–time (DSD/SST) method. We focus on the relationship between the centerline geometry of the aorta and the flow field, which influences the wall shear stress distribution. The centerlines of the aorta models we use in our analysis are extracted from the CT scans, and we assume a constant diameter. Torsion-free model geometries are generated by projecting the original centerline to its averaged plane of curvature. The flow fields for the original and projected geometries are compared to examine the influence of the torsion.

[1]  Roland Hetzer,et al.  Left ventricular assist device. , 2002, The New England journal of medicine.

[2]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[3]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[4]  G. Liu,et al.  Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves , 2012 .

[5]  Tayfun E. Tezduyar,et al.  Notes on the stabilized space-time finite-element formulation of unsteady incompressible flows , 1992 .

[6]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[7]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[8]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[9]  Tayfun E. Tezduyar,et al.  Fluid-object interactions in interior ballistics , 2000 .

[10]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[11]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[12]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[13]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[14]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[15]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[16]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[17]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[18]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[19]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[20]  Tayfun E. Tezduyar,et al.  Aerodynamic Interactions Between Parachute Canopies , 2003 .

[21]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[22]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[23]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[24]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[25]  I. Akkerman,et al.  Isogeometric analysis of free-surface flow , 2011, J. Comput. Phys..

[26]  T. Tezduyar,et al.  Influencing factors in image‐based fluid–structure interaction computation of cerebral aneurysms , 2011 .

[27]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[28]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[29]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[30]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[31]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[32]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[33]  Tayfun E. Tezduyar,et al.  CFD methods for three-dimensional computation of complex flow problems , 1999 .

[34]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[35]  Eugenio Oñate,et al.  A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER , 2013 .

[36]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[37]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[38]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[39]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[40]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[41]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[42]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[43]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[44]  T. Tezduyar,et al.  Parallel finite element computation of free-surface flows , 1999 .

[45]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modelling of parachute soft‐landing dynamics , 2005 .

[46]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[47]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[48]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[49]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[50]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[51]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[52]  Tayfun E. Tezduyar,et al.  Space–time SUPG formulation of the shallow‐water equations , 2010 .

[53]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[54]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[55]  Tayfun E. Tezduyar,et al.  Simulation of multiple spheres falling in a liquid-filled tube , 1996 .

[56]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[57]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[58]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[59]  Tayfun E. Tezduyar,et al.  Simulation of flow problems with moving mechanical components, fluid–structure interactions and two‐fluid interfaces , 1997 .

[60]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[61]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[62]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[63]  D S Paik,et al.  Measurement of the aorta and its branches with helical CT. , 1998, Radiology.

[64]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[65]  J. Elefteriades Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. , 2002, The Annals of thoracic surgery.

[66]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[67]  S. Mittal,et al.  A finite element study of incompressible flows past oscillating cylinders and aerofoils , 1992 .

[68]  Tayfun E. Tezduyar,et al.  3D Simulation of fluid-particle interactions with the number of particles reaching 100 , 1997 .

[69]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[70]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[71]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[72]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[73]  Richard Benney,et al.  Computational methods for modeling parachute systems , 2003, Comput. Sci. Eng..

[74]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[75]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[76]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[77]  Eric M. Isselbacher,et al.  Thoracic and Abdominal Aortic Aneurysms , 2005, Circulation.

[78]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[79]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[80]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[81]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[82]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[83]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[84]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[85]  Genki Yagawa,et al.  Accurate fluid-structure interaction computations using elements without mid-side nodes , 2011 .

[86]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[87]  S. Yoshimura,et al.  Parallel BDD-based monolithic approach for acoustic fluid-structure interaction , 2012 .

[88]  Toshio Kobayashi,et al.  Influence of wall elasticity on image-based blood flow simulations , 2004 .

[89]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[90]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[91]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[92]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Special methods and enhanced solution techniques , 2007 .

[93]  Tayfun E. Tezduyar,et al.  Space–time SUPG finite element computation of shallow-water flows with moving shorelines , 2011 .

[94]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[95]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[96]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[97]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[98]  E. Oñate,et al.  A coupled PFEM–Eulerian approach for the solution of porous FSI problems , 2012, Computational Mechanics.

[99]  Tayfun E. Tezduyar,et al.  Parallel finite element computations in fluid mechanics , 2006 .

[100]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[101]  M. R. Lewis,et al.  A finite-element/boundary-element method for large-displacement fluid-structure interaction , 2012 .

[102]  John A Elefteriades,et al.  Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. , 2002, The Annals of thoracic surgery.

[103]  Tayfun E. Tezduyar,et al.  Bringing Them Down Safely , 2012 .

[104]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[105]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[106]  T. Tezduyar,et al.  Space-time finite element computation of compressible flows between moving components , 1995 .

[107]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[108]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[109]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[110]  Tayfun E. Tezduyar,et al.  Parallel finite element simulation of large ram-air parachutes , 1997 .

[111]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[112]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[113]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[114]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[115]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[116]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[117]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[118]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[119]  V. Kalro,et al.  Parallel Computational Methods for 3D Simulation of a Parafoil with Prescribed Shape Changes , 1997, Parallel Comput..

[120]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[121]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[122]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[123]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[124]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[125]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[126]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[127]  Tayfun E. Tezduyar,et al.  Estimation of element-based zero-stress state for arterial FSI computations , 2014 .

[128]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[129]  Tayfun E. Tezduyar,et al.  The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft , 2001 .

[130]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[131]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[132]  Tayfun E. Tezduyar,et al.  Methods for 3D computation of fluid-object interactions in spatially periodic flows , 2001 .

[133]  Michael L. Accorsi,et al.  Fluid-Structure Interactions of a Round Parachute: Modeling and Simulation Techniques , 2001 .

[134]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[135]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[136]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[137]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[138]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[139]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[140]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[141]  Tayfun E. Tezduyar,et al.  Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques , 2007 .

[142]  Guirong Liu,et al.  A moving-mesh gradient smoothing method for compressible CFD problems , 2013 .

[143]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[144]  Roger Ohayon,et al.  Energy approach for static and linearized dynamic studies of elastic structures containing incompressible liquids with capillarity: a theoretical formulation , 2012 .

[145]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[146]  G. P. Wren,et al.  Parallel Implementations of a Finite Element Formulation for Fluid-Structure Interactions in Interior Flows , 1997, Parallel Comput..

[147]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[148]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .