Buried Impact Features on Mercury as Revealed by Gravity Data

[1]  H. Frey,et al.  Discovery of a 450 km diameter, multi‐ring basin on Mars through analysis of MOLA topographic data , 1999 .

[2]  Maria T. Zuber,et al.  The transition from complex crater to peak-ring basin on the Moon: New observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument , 2011 .

[3]  Roger J. Phillips,et al.  Potential anomalies on a sphere: Applications to the thickness of the lunar crust , 1998 .

[4]  E. J. Finnegan,et al.  MESSENGER at Mercury: A mid-term report , 2012 .

[5]  Qinghui Liu,et al.  An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features , 2010 .

[6]  M. Sori A thin, dense crust for Mercury , 2018 .

[7]  S. Murchie,et al.  The distribution and origin of smooth plains on Mercury , 2013 .

[8]  A. Konopliv,et al.  Recent Gravity Models as a Result of the Lunar Prospector Mission , 2001 .

[9]  David E. Smith,et al.  The Mercury Laser Altimeter Instrument for the MESSENGER Mission , 2007 .

[10]  James W. Head,et al.  New morphometric measurements of craters and basins on Mercury and the Moon from MESSENGER and LRO altimetry and image data: An observational framework for evaluating models of peak-ring basin formation , 2013 .

[11]  Kathleen C. Howell,et al.  Detection and characterization of buried lunar craters with GRAIL data , 2017 .

[12]  Frank G. Lemoine,et al.  Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science , 2016 .

[13]  G. Balmino,et al.  The gravity field of Mars: results from Mars Global Surveyor. , 1999, Science.

[14]  Jean-Luc Margot,et al.  Thickness of the crust of Mercury from geoid‐to‐topography ratios , 2015 .

[15]  W. Hartmann,et al.  Moon: Origin and evolution of multi-ring basins , 1971 .

[16]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[17]  David E. Smith,et al.  Gravity Field and Internal Structure of Mercury from MESSENGER , 2012, Science.

[18]  J. Oberst,et al.  Geologic evolution and cratering history of Mercury , 2001 .

[19]  J. Laskar,et al.  A pre-Caloris synchronous rotation for Mercury , 2011, 1112.2384.

[20]  David E. Smith,et al.  Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry , 2013, Science.

[21]  The Origin of Planetary Impactors in the Inner Solar System , 2005, Science.

[22]  J. Laskar,et al.  Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation , 2012 .

[23]  F. Preusker,et al.  Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan , 2018 .

[24]  R. Phillips,et al.  Lunar Multiring Basins and the Cratering Process , 1999 .

[25]  Sami W. Asmar,et al.  Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements , 2015, Science Advances.

[26]  L. Nittler,et al.  Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER , 2011, Science.

[27]  Gareth S. Collins,et al.  Formation of the Orientale lunar multiring basin , 2016, Science.

[28]  J. Head,et al.  The deep structure of lunar basins: Implications for basin formation and modification , 1985 .

[29]  David E. Smith,et al.  The Origin of Lunar Mascon Basins , 2013, Science.

[30]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[31]  Frank G. Lemoine,et al.  A 70th degree lunar gravity model (GLGM‐2) from Clementine and other tracking data , 1997 .

[32]  Richard J. Pike,et al.  Depth/diameter relations of fresh lunar craters: Revision from spacecraft data , 1974 .

[33]  Klaus Mosegaard,et al.  MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[34]  M. Wieczorek,et al.  Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .

[35]  C. Bowin Depth of principal mass anomalies contributing to the earth's geoidal undulations and gravity anomalies∗ , 1983 .

[36]  David E. Smith,et al.  The Shape and Internal Structure of the Moon from the Clementine Mission , 1994, Science.

[37]  A. Konopliv,et al.  Venus Gravity: 180th Degree and Order Model , 1999 .

[38]  David W. Hughes,et al.  Books-Received - the Geology of Multi-Ring Impact Basins - the Moon and Other Planets , 1993 .

[39]  W. Sjogren,et al.  Mascons: Lunar Mass Concentrations , 1968, Science.

[40]  J. Head,et al.  The formation of peak-ring basins: Working hypotheses and path forward in using observations to constrain models of impact-basin formation , 2016 .

[41]  David E. Smith,et al.  Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry , 2012, Science.

[42]  W. Hartmann,et al.  Concentric Structures Surrounding Lunar Basins , 1962 .

[43]  Erwan Mazarico,et al.  The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit , 2014 .

[44]  T. Morota,et al.  The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures , 2015 .

[45]  S. Murchie,et al.  The transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin formation models , 2011 .

[46]  David E. Smith,et al.  The lunar crust: Global structure and signature of major basins , 1996 .

[47]  W. Featherstone,et al.  Band‐limited Bouguer gravity identifies new basins on the Moon , 2013 .

[48]  David E. Smith,et al.  Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data , 2012 .

[49]  David E. Smith,et al.  The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission , 2013 .

[50]  H. Frey,et al.  Buried impact basin distribution on Mars: Contributions from crustal thickness data , 2007 .

[51]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[52]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[53]  David E. Smith,et al.  Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties , 2013, Science.

[54]  Erick R. Malaret,et al.  The Mercury Dual Imaging System on the MESSENGER Spacecraft , 2007 .

[55]  J. Head,et al.  Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations , 2015 .

[56]  David E. Smith,et al.  GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation , 2017 .

[57]  Hiroshi Araki,et al.  Crustal thickness of the Moon: Implications for farside basin structures , 2009 .

[58]  J. Head,et al.  Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism , 2013, Nature.

[59]  James H. Roark,et al.  Ancient lowlands on Mars , 2002 .

[60]  S. Solomon,et al.  MESSENGER Mission Overview , 2007 .

[61]  David E. Smith,et al.  The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data , 2012 .

[62]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[63]  M. Zuber,et al.  Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria , 2016 .