Pricing pension plans under jump-diffusion models for the salary

In this paper we consider the valuation of a defined benefit pension plan in the presence of jumps in the underlying salary and including the possibility of early retirement. We will consider that the salary follows a jump-diffusion model, thus giving rise to a partial integro-differential equation (PIDE). After posing the model, we propose the appropriate numerical methods to solve the PIDE problem. These methods mainly consists of Lagrange-Galerkin discretizations combined with augmented Lagrangian active set techniques and with the explicit treatment of the integral term. Finally, we compare the numerical results with those ones obtained with Monte Carlo techniques.

[1]  Jari Toivanen,et al.  A high-order front-tracking finite difference method for pricing American options under jump-diffusion models , 2010 .

[2]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[3]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[4]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[5]  Karl Kunisch,et al.  Augmented Lagrangian Active Set Methods for Obstacle Problems , 2003 .

[6]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[7]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[8]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[9]  O. Pironneau,et al.  Finite Elements and characteristics for some parabolic-hyperbolic problems , 1983 .

[10]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[11]  Carlos Vázquez,et al.  An upwind numerical approach for an American and European option pricing model , 1998, Appl. Math. Comput..

[12]  S. Kou Chapter 2 Jump-Diffusion Models for Asset Pricing in Financial Engineering , 2007 .

[13]  María Rodríguez Nogueiras Numerical analysis of second-order Lagrange-Galerkin schemes, application to option pricing problems , 2005 .

[14]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[15]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[16]  Carlos Vázquez,et al.  Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part I: Time Discretization , 2006, SIAM J. Numer. Anal..

[17]  Maria del Carmen Calvo-Garrido Pricing pension plans based on average salary without early retirement: partial differential equation modeling and numerical solution , 2012 .

[18]  Carlos Vázquez,et al.  Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part II: Fully Discretized Scheme and Quadrature Formulas , 2006, SIAM J. Numer. Anal..

[19]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[20]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[21]  A. Pascucci PDE and Martingale Methods in Option Pricing , 2010 .

[22]  George Labahn,et al.  A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..

[23]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[24]  Carlos Vázquez,et al.  Comparison of Two Algorithms to Solve the Fixed-strike Amerasian Options Pricing Problem , 2006 .

[25]  María del Carmen Calvo-Garrido,et al.  Mathematical Analysis and Numerical Methods for Pricing Pension Plans Allowing Early Retirement , 2013, SIAM J. Appl. Math..

[26]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[27]  Hongxing Rui,et al.  A second order characteristic finite element scheme for convection-diffusion problems , 2002, Numerische Mathematik.

[28]  Jari Toivanen,et al.  An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .

[29]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[30]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[31]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.