Pricing pension plans under jump-diffusion models for the salary
暂无分享,去创建一个
[1] Jari Toivanen,et al. A high-order front-tracking finite difference method for pricing American options under jump-diffusion models , 2010 .
[2] O. Pironneau. On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .
[3] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[4] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[5] Karl Kunisch,et al. Augmented Lagrangian Active Set Methods for Obstacle Problems , 2003 .
[6] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[7] T. F. Russell,et al. NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .
[8] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[9] O. Pironneau,et al. Finite Elements and characteristics for some parabolic-hyperbolic problems , 1983 .
[10] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[11] Carlos Vázquez,et al. An upwind numerical approach for an American and European option pricing model , 1998, Appl. Math. Comput..
[12] S. Kou. Chapter 2 Jump-Diffusion Models for Asset Pricing in Financial Engineering , 2007 .
[13] María Rodríguez Nogueiras. Numerical analysis of second-order Lagrange-Galerkin schemes, application to option pricing problems , 2005 .
[14] Francis A. Longstaff,et al. Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .
[15] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[16] Carlos Vázquez,et al. Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part I: Time Discretization , 2006, SIAM J. Numer. Anal..
[17] Maria del Carmen Calvo-Garrido. Pricing pension plans based on average salary without early retirement: partial differential equation modeling and numerical solution , 2012 .
[18] Carlos Vázquez,et al. Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part II: Fully Discretized Scheme and Quadrature Formulas , 2006, SIAM J. Numer. Anal..
[19] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[20] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[21] A. Pascucci. PDE and Martingale Methods in Option Pricing , 2010 .
[22] George Labahn,et al. A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..
[23] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[24] Carlos Vázquez,et al. Comparison of Two Algorithms to Solve the Fixed-strike Amerasian Options Pricing Problem , 2006 .
[25] María del Carmen Calvo-Garrido,et al. Mathematical Analysis and Numerical Methods for Pricing Pension Plans Allowing Early Retirement , 2013, SIAM J. Appl. Math..
[26] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[27] Hongxing Rui,et al. A second order characteristic finite element scheme for convection-diffusion problems , 2002, Numerische Mathematik.
[28] Jari Toivanen,et al. An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .
[29] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[30] RAUL KANGRO,et al. Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..
[31] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.