Biological activity of Morita-Baylis-Hillman adduct homodimers in L. infantum and L. amazonensis: anti-Leishmania activity and cytotoxicity

[1]  R. J. Alves,et al.  Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species , 2017, Parasitology Research.

[2]  Bruna B. Dantas,et al.  Morita-Baylis-Hillman Adducts Display Anti-Inflammatory Effects by Modulating Inflammatory Mediator Expression in RAW264.7 Cells , 2017, Mediators of inflammation.

[3]  M. Wilson,et al.  Cutaneous Manifestations of Human and Murine Leishmaniasis , 2017, International journal of molecular sciences.

[4]  R. Arenas,et al.  Leishmaniasis: a review , 2017, F1000Research.

[5]  M. L. Vasconcellos,et al.  Synthesis of 16 New Hybrids from Tetrahydropyrans Derivatives and Morita-Baylis-Hillman Adducts: In Vitro Screening against Leishmania donovani , 2017, Molecules.

[6]  G. Ashraf,et al.  Recent updates on the application of protein-protein interaction network in drug discovery. , 2016, Current drug metabolism.

[7]  M. L. Vasconcellos,et al.  Synthesis and In Vitro Anti Leishmania amazonensis Biological Screening of Morita-Baylis-Hillman Adducts Prepared from Eugenol, Thymol and Carvacrol , 2016, Molecules.

[8]  Kuljit Singh,et al.  Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis. , 2016, Current drug metabolism.

[9]  M. L. Vasconcellos,et al.  Synthesis and activity of novel homodimers of Morita-Baylis-Hillman adducts against Leishmania donovani: A twin drug approach. , 2016, Bioorganic & medicinal chemistry letters.

[10]  J. Votýpka,et al.  A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies , 2016, PLoS neglected tropical diseases.

[11]  F. A. Carvalho,et al.  Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. , 2015, Journal of ethnopharmacology.

[12]  N. K. Jain,et al.  Surface-Engineered Dendrimeric Nanoconjugates for Macrophage-Targeted Delivery of Amphotericin B: Formulation Development and In Vitro and In Vivo Evaluation , 2015, Antimicrobial Agents and Chemotherapy.

[13]  Márcia R. Oliveira,et al.  Kinetic resolution of leishmanicidal meta and para (±)-2-[Hydroxy(nitrophenyl)methyl]acrylonitrile catalyzed by CALB: In vitro evaluations of separated meta (R), (S) and (R/S) adducts , 2014 .

[14]  S. Jeronimo,et al.  Dual Immune Modulatory Effect of Vitamin A in Human Visceral Leishmaniasis , 2014, PloS one.

[15]  A. Fontes,et al.  Trypanosoma cruzi Cell Death Induced by the Morita-Baylis-Hillman Adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile) , 2014, PloS one.

[16]  K. Andrews,et al.  Drug repurposing and human parasitic protozoan diseases , 2014, International journal for parasitology. Drugs and drug resistance.

[17]  M. L. Vasconcellos,et al.  Morita-Baylis-Hillman adduct shows in vitro activity against Leishmania (Viannia) braziliensis associated with a reduction in IL-6 and IL-10 but independent of nitric oxide , 2012, Parasitology.

[18]  Márcia R. Oliveira,et al.  Synthesis, Evaluation Against Leishmania amazonensis and Cytotoxicity Assays in Macrophages of Sixteen New Congeners Morita—Baylis—Hillman Adducts. , 2012 .

[19]  Márcia R. Oliveira,et al.  Synthesis, evaluation against Leishmania amazonensis and cytotoxicity assays in macrophages of sixteen new congeners Morita-Baylis-Hillman adducts. , 2011, European journal of medicinal chemistry.

[20]  Márcia R. Oliveira,et al.  Design, synthesis and antileishmanial in vitro activity of new series of chalcones-like compounds: a molecular hybridization approach. , 2011, Bioorganic & medicinal chemistry.

[21]  Márcia R. Oliveira,et al.  Efficient synthesis of 16 aromatic Morita-Baylis-Hillman adducts: Biological evaluation on Leishmania amazonensis and Leishmania chagasi. , 2010, Bioorganic chemistry.

[22]  G. Rocha,et al.  3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile): A new highly active compound against epimastigote and trypomastigote form of Trypanosoma cruzi. , 2010, Bioorganic chemistry.

[23]  M. L. Vasconcellos,et al.  Improved synthesis of seven aromatic Baylis-Hillman adducts (BHA): evaluation against Artemia salina Leach. and Leishmania chagasi. , 2009, European journal of medicinal chemistry.

[24]  A. Dixit,et al.  Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: an approach for rational drug design. , 2008, The Journal of antimicrobial chemotherapy.

[25]  V. Singh,et al.  Immune response to leishmania: paradox rather than paradigm. , 2007, FEMS immunology and medical microbiology.

[26]  U. Murthy,et al.  Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. , 2006, Bioorganic & medicinal chemistry.

[27]  C. Nakamura,et al.  Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. , 2006, Parasitology international.

[28]  C. A. Camara,et al.  Baylis-Hillman adducts with molluscicidal activity against Biomphalaria glabrata. , 2006, Pest management science.

[29]  V. Rao,et al.  Anti-malarial activity of Baylis-Hillman adducts from substituted 2-chloronicotinaldehydes. , 2005, Bioorganic & medicinal chemistry letters.

[30]  C. Bories,et al.  Miltefosine Induces Apoptosis-Like Death in Leishmania donovani Promastigotes , 2004, Antimicrobial Agents and Chemotherapy.

[31]  A. Debrabant,et al.  Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. , 2004, International journal for parasitology.

[32]  L. Costa-Lotufo,et al.  The cytotoxic and embryotoxic effects of kaurenoic acid, a diterpene isolated from Copaifera langsdorffii oleo-resin. , 2002, Toxicon : official journal of the International Society on Toxinology.

[33]  P. Samman Cutaneous Manifestations , 1967 .

[34]  R. Mondragón-Flores,et al.  Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana , 2017, Parasitology Research.

[35]  M. L. Vasconcellos,et al.  High selective leishmanicidal activity of 3-hydroxy-2-methylene-3-(4-bromophenyl)propanenitrile and analogous compounds. , 2007, European journal of medicinal chemistry.

[36]  J. Louis,et al.  Immune Response to Leishmania , 1984 .