APPLICATION OF AUTO REGRESSIVE MODELS OF WAVELET SUB-BANDS FOR CLASSIFYING TERAHERTZ PULSE MEASUREMENTS

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined — the classification of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classification, a simple Mahalanobis distance classifier is used. After feature extraction, classification accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

[1]  H. Fröhlich,et al.  The Biological Effects of Microwaves and Related Questions , 1980 .

[2]  Truong Q. Nguyen,et al.  Wavelets and filter banks , 1996 .

[3]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[4]  Luis F. Chaparro,et al.  Iterative Composite Filtering for Image Restoration , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jamal Tuqan,et al.  A state space approach to the design of globally optimal FIR energy compaction filters , 2000, IEEE Trans. Signal Process..

[6]  P. Taday,et al.  Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting ‐ a review , 2007, The Journal of pharmacy and pharmacology.

[7]  Derek Abbott,et al.  T-ray relevant frequencies for osteosarcoma classification , 2006, SPIE Micro + Nano Materials, Devices, and Applications.

[8]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[9]  Derek Abbott,et al.  Powder retection with T-ray imaging , 2003, SPIE Defense + Commercial Sensing.

[10]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[11]  P. Taday,et al.  Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. , 2005, Journal of pharmaceutical sciences.

[12]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[13]  Kodo Kawase,et al.  Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging. , 2003, Applied optics.

[14]  Roberto Kawakami Harrop Galvão,et al.  Wavelet-packet identification of dynamic systems in frequency subbands , 2006, Signal Process..

[15]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[16]  E. Linfield,et al.  Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. , 2002, Physics in medicine and biology.

[17]  Barry G. Sherlock,et al.  On the space of orthonormal wavelets , 1998, IEEE Trans. Signal Process..

[18]  Tobias Bauer,et al.  Visualization and classification in biomedical terahertz pulsed imaging. , 2002, Physics in medicine and biology.

[19]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S. Jain,et al.  Parametric modeling of brain signals , 2004, Proceedings. Eighth International Conference on Information Visualisation.

[21]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[22]  S. Mallat II – Fourier kingdom , 1999 .

[23]  Kodo Kawase,et al.  Terahertz parametric sources and imaging applications , 2005 .

[24]  A. Jensen,et al.  Ripples in Mathematics - The Discrete Wavelet Transform , 2001 .

[25]  Todd R. Ogden,et al.  Wavelet Methods for Time Series Analysis , 2002 .

[26]  D. Abbott,et al.  2-D Wavelet Segmentation in 3-D T-Ray Tomography , 2007, IEEE Sensors Journal.

[27]  Jürgen Schürmann,et al.  Pattern classification , 2008 .

[28]  Fred Godtliebsen,et al.  Bayesian modeling and significant features exploration in wavelet power spectra , 2007 .

[29]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  Derek Abbott,et al.  De-noising techniques for terahertz responses of biological samples , 2001 .

[32]  S. Hadjiloucas,et al.  Comparison of subspace and ARX models of a waveguide's terahertz transient response after optimal wavelet filtering , 2004, IEEE Transactions on Microwave Theory and Techniques.

[33]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[34]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[35]  Derek Abbott,et al.  One-dimensional wavelet transforms and their application to T-ray pulsed signal identification , 2006, SPIE Micro + Nano Materials, Devices, and Applications.

[36]  Derek Abbott,et al.  In vitro osteosarcoma biosensing using THz time domain spectroscopy , 2004, SPIE Micro + Nano Materials, Devices, and Applications.

[37]  D. Mitchell Wilkes,et al.  ARMA model order estimation based on the eigenvalues of the covariance matrix , 1993, IEEE Trans. Signal Process..