Effects of acoustic periodicity, intelligibility, and pre-stimulus alpha power on the event-related potentials in response to speech

[1]  W G Walter,et al.  The effects of attention and distraction on the contingent negative variation in normal and neurotic subjects. , 1968, Electroencephalography and clinical neurophysiology.

[2]  IEEE Recommended Practice for Speech Quality Measurements , 1969, IEEE Transactions on Audio and Electroacoustics.

[3]  J J Tecce,et al.  Attention Reduction and Suppressed Direct-Current Potentials in the Human Brain , 1969, Science.

[4]  B Blesser,et al.  Speech perception under conditions of spectral transformation. I. Phonetic characteristics. , 1972, Journal of speech and hearing research.

[5]  S. Hillyard,et al.  Human auditory evoked potentials. I. Evaluation of components. , 1974, Electroencephalography and clinical neurophysiology.

[6]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[7]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[8]  K. Alho,et al.  Stages of auditory feature conjunction: an event-related brain potential study. , 1994, Journal of experimental psychology. Human perception and performance.

[9]  H. Dillon,et al.  An international comparison of long‐term average speech spectra , 1994 .

[10]  W. Klimesch,et al.  Induced alpha band power changes in the human EEG and attention , 1998, Neuroscience Letters.

[11]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[12]  S. Hillyard,et al.  Intra-modal and cross-modal spatial attention to auditory and visual stimuli. An event-related brain potential study. , 1999, Brain research. Cognitive brain research.

[13]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[14]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[15]  Matthew H. Davis,et al.  Hierarchical Processing in Spoken Language Comprehension , 2003, The Journal of Neuroscience.

[16]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[17]  Stefan Uppenkamp,et al.  Temporal dynamics of pitch in human auditory cortex , 2004, NeuroImage.

[18]  David Poeppel,et al.  Neural response correlates of detection of monaurally and binaurally created pitches in humans. , 2006, Cerebral cortex.

[19]  Helmut Laufs,et al.  Where the BOLD signal goes when alpha EEG leaves , 2006, NeuroImage.

[20]  Simon Hanslmayr,et al.  Prestimulus oscillations predict visual perception performance between and within subjects , 2007, NeuroImage.

[21]  M. Corbetta,et al.  Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. , 2007, Cerebral cortex.

[22]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[23]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[24]  O. Jensen,et al.  Asymmetric Amplitude Modulations of Brain Oscillations Generate Slow Evoked Responses , 2008, The Journal of Neuroscience.

[25]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[26]  Stefan Haufe,et al.  Now You'll Feel It, Now You Won't: EEG Rhythms Predict the Effectiveness of Perceptual Masking , 2009, Journal of Cognitive Neuroscience.

[27]  Biyu J. He,et al.  The fMRI signal, slow cortical potential and consciousness , 2009, Trends in Cognitive Sciences.

[28]  J. Gross,et al.  On the Role of Prestimulus Alpha Rhythms over Occipito-Parietal Areas in Visual Input Regulation: Correlation or Causation? , 2010, The Journal of Neuroscience.

[29]  Antoine J. Shahin,et al.  Attentional Gain Control of Ongoing Cortical Speech Representations in a “Cocktail Party” , 2010, The Journal of Neuroscience.

[30]  O. Jensen,et al.  Rhythmic Pulsing: Linking Ongoing Brain Activity with Evoked Responses , 2010, Front. Hum. Neurosci..

[31]  Roy D. Patterson,et al.  Direct Recordings of Pitch Responses from Human Auditory Cortex , 2010, Current Biology.

[32]  P. Jolicoeur,et al.  Electrophysiological correlates of the maintenance of the representation of pitch objects in acoustic short-term memory. , 2011, Psychophysiology.

[33]  Hillel Pratt,et al.  Sensory ERP Components , 2011 .

[34]  S. Luck,et al.  The Oxford handbook of event-related potential components , 2011 .

[35]  Sonja A. Kotz,et al.  Multiple brain signatures of integration in the comprehension of degraded speech , 2011, NeuroImage.

[36]  Burkhard Maess,et al.  Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network , 2012, The Journal of Neuroscience.

[37]  Jonas Obleser,et al.  Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. , 2012, Cerebral cortex.

[38]  Nathan Weisz,et al.  Lateralized auditory cortical alpha band activity and interregional connectivity pattern reflect anticipation of target sounds. , 2012, Cerebral cortex.

[39]  Isabelle Peretz,et al.  Distinct electrophysiological indices of maintenance in auditory and visual short-term memory , 2013, Neuropsychologia.

[40]  Joachim Gross,et al.  Phase-Locked Responses to Speech in Human Auditory Cortex are Enhanced During Comprehension , 2012, Cerebral cortex.

[41]  Yi Xu ProsodyPro — A Tool for Large-scale Systematic Prosody Analysis , 2013 .

[42]  Josh H. McDermott,et al.  Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex , 2013, The Journal of Neuroscience.

[43]  Christoph M. Michel,et al.  Left temporal alpha-band activity reflects single word intelligibility , 2013, Front. Syst. Neurosci..

[44]  S. Scott,et al.  The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives , 2013, Cerebral cortex.

[45]  Jonathan Z. Simon,et al.  Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure , 2014, NeuroImage.

[46]  Stuart Rosen,et al.  The role of periodicity in perceiving speech in quiet and in background noise. , 2015, The Journal of the Acoustical Society of America.

[47]  Erich Schröger,et al.  Acoustic Detail Guides Attention Allocation in a Selective Listening Task , 2015, Journal of Cognitive Neuroscience.

[48]  Jonas Obleser,et al.  Alpha Phase Determines Successful Lexical Decision in Noise , 2015, The Journal of Neuroscience.

[49]  J. Obleser,et al.  Alpha Oscillatory Dynamics Index Temporal Expectation Benefits in Working Memory. , 2015, Cerebral cortex.

[50]  Tadeusz W Kononowicz,et al.  The contingent negative variation (CNV): timing isn’t everything , 2016, Current Opinion in Behavioral Sciences.