Heat conduction modeling by using fractional-order derivatives

The article deals with the heat conduction modeling. A brief historical overview of the authors who have dealt with the heat conduction and overview of solving methods is listed in the introduction of article. In the next section a mathematical model of one-dimensional heat conduction with using derivatives of integer- and fractional-order is described. The methods of solving models of heat conduction are described, namely analytical and numerical methods. In the case of numerical methods regards the finite difference method by using Grunwald-Letnikov definition for the fractional time derivative. Implementation of these individual methods was realized in MATLAB. The two libraries of m-functions for the heat conduction model have been created, namely Heat Conduction Toolbox and Fractional Heat Conduction Toolbox. At the conclusion of the article the simulations examples with using toolboxes are listed.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[3]  T. N. Narasimhan,et al.  Fourier’s heat conduction equation: History, influence, and connections , 1999, Journal of Earth System Science.

[4]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[6]  O. Agrawal A numerical scheme for initial compliance and creep response of a system , 2009 .

[7]  O. Agrawal,et al.  A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives , 2002 .

[8]  Rudolf Gorenflo,et al.  Fully discrete random walks for space-time fractional diffusion equations , 2003, Signal Process..

[9]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[10]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[11]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[12]  J. P. Roop Variational Solution of the Fractional Advection Dispersion Equation , 2004 .

[13]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[14]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[15]  Jun-Sheng Duan Time- and space-fractional partial differential equations , 2005 .

[16]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[17]  I. Turner,et al.  A fractional-order implicit difference approximation for the space-time fractional diffusion equation , 2006 .

[18]  Xing-yuan Wang,et al.  Projective synchronization of fractional order chaotic system based on linear separation , 2008 .

[19]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[20]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[21]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[22]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[23]  I. Podlubny Fractional differential equations , 1998 .

[24]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[25]  I. Turner,et al.  A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .

[26]  Xiaomei Yan,et al.  Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[27]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[28]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[29]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[30]  Fawang Liu,et al.  Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..

[31]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[32]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[33]  L. Chua,et al.  A universal circuit for studying chaotic phenomena , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[34]  W. Wyss The fractional diffusion equation , 1986 .

[35]  Marzio Marseguerra,et al.  Monte Carlo evaluation of FADE approach to anomalous kinetics , 2007, Math. Comput. Simul..

[36]  Ercília Sousa Numerical approximations for fractional diffusion equations via splines , 2011, Comput. Math. Appl..

[37]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[38]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[39]  Fawang Liu,et al.  The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.

[40]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[41]  Hossein Jafari,et al.  Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition , 2006, Appl. Math. Comput..

[42]  Xiaopeng Zhang,et al.  Modified projective synchronization of fractional-order chaotic systems via active sliding mode control , 2012 .

[43]  I. Podlubny Fractional-Order Models: A New Stage in Modelling and Control , 1998 .

[44]  V. Lakshmikantham,et al.  Basic theory of fractional differential equations , 2008 .

[45]  Pankaj Kumar,et al.  An approximate method for numerical solution of fractional differential equations , 2006, Signal Process..

[46]  S. Momani,et al.  Numerical solutions of the space‐time fractional advection‐dispersion equation , 2008 .

[47]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[48]  K. B. Oldham Semiintegral electroanalysis. Analog implementation , 1973 .

[49]  T. N. Narasimhan Fourier’s heat conduction equation: History, influence, and connections , 1999 .

[50]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[51]  J. Liouville Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .

[52]  E. Scalas,et al.  Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  K. B. Oldham,et al.  Analogue instrumentation for processing polarographic data , 1983 .

[54]  Xingyuan Wang,et al.  Chaos control of a fractional order modified coupled dynamos system , 2009 .

[55]  S. Sakakibara Properties of Vibration with Fractional Derivative Damping of Order 1/2. , 1997 .

[56]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[57]  I. Podlubny,et al.  Modelling heat transfer in heterogeneous media using fractional calculus , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[59]  Fawang Liu,et al.  Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends , 2005 .

[60]  Duggento Andrea,et al.  非定常動力学に対する推論の枠組 II 生理学的シグナリングモデルへの応用 , 2008 .

[61]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[62]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[63]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[64]  Xing-yuan Wang,et al.  Dynamic analysis of the fractional-order Liu system and its synchronization. , 2007, Chaos.

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[67]  A. Oustaloup La dérivation non entière , 1995 .

[68]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..