Heat conduction modeling by using fractional-order derivatives
暂无分享,去创建一个
[1] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[2] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[3] T. N. Narasimhan,et al. Fourier’s heat conduction equation: History, influence, and connections , 1999, Journal of Earth System Science.
[4] Blas M Vinagre Jara,et al. Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] R. Gorenflo,et al. Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .
[6] O. Agrawal. A numerical scheme for initial compliance and creep response of a system , 2009 .
[7] O. Agrawal,et al. A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives , 2002 .
[8] Rudolf Gorenflo,et al. Fully discrete random walks for space-time fractional diffusion equations , 2003, Signal Process..
[9] I. Podlubny. Matrix Approach to Discrete Fractional Calculus , 2000 .
[10] R. Bagley,et al. On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .
[11] Fawang Liu,et al. Finite difference approximations for the fractional Fokker–Planck equation , 2009 .
[12] J. P. Roop. Variational Solution of the Fractional Advection Dispersion Equation , 2004 .
[13] M. Maeda,et al. [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].
[14] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[15] Jun-Sheng Duan. Time- and space-fractional partial differential equations , 2005 .
[16] Yangquan Chen,et al. Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..
[17] I. Turner,et al. A fractional-order implicit difference approximation for the space-time fractional diffusion equation , 2006 .
[18] Xing-yuan Wang,et al. Projective synchronization of fractional order chaotic system based on linear separation , 2008 .
[19] I. Turner,et al. Time fractional advection-dispersion equation , 2003 .
[20] I. Turner,et al. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .
[21] E. Kreyszig,et al. Advanced Engineering Mathematics. , 1974 .
[22] Fawang Liu,et al. Implicit difference approximation for the time fractional diffusion equation , 2006 .
[23] I. Podlubny. Fractional differential equations , 1998 .
[24] F. Mainardi,et al. The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.
[25] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .
[26] Xiaomei Yan,et al. Modified projective synchronization of fractional-order chaotic systems based on active sliding mode control , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).
[27] O. Agrawal. Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .
[28] Wei Yang,et al. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..
[29] K. B. Oldham,et al. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .
[30] Fawang Liu,et al. Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..
[31] G. Fix,et al. Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .
[32] V. Ervin,et al. Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .
[33] L. Chua,et al. A universal circuit for studying chaotic phenomena , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[34] W. Wyss. The fractional diffusion equation , 1986 .
[35] Marzio Marseguerra,et al. Monte Carlo evaluation of FADE approach to anomalous kinetics , 2007, Math. Comput. Simul..
[36] Ercília Sousa. Numerical approximations for fractional diffusion equations via splines , 2011, Comput. Math. Appl..
[37] Xing-yuan Wang,et al. Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .
[38] Fawang Liu,et al. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..
[39] Fawang Liu,et al. The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.
[40] Benoit B. Mandelbrot,et al. Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.
[41] Hossein Jafari,et al. Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition , 2006, Appl. Math. Comput..
[42] Xiaopeng Zhang,et al. Modified projective synchronization of fractional-order chaotic systems via active sliding mode control , 2012 .
[43] I. Podlubny. Fractional-Order Models: A New Stage in Modelling and Control , 1998 .
[44] V. Lakshmikantham,et al. Basic theory of fractional differential equations , 2008 .
[45] Pankaj Kumar,et al. An approximate method for numerical solution of fractional differential equations , 2006, Signal Process..
[46] S. Momani,et al. Numerical solutions of the space‐time fractional advection‐dispersion equation , 2008 .
[47] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[48] K. B. Oldham. Semiintegral electroanalysis. Analog implementation , 1973 .
[49] T. N. Narasimhan. Fourier’s heat conduction equation: History, influence, and connections , 1999 .
[50] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[51] J. Liouville. Mémoire sur l'usage que l'on peut faire de la formule de Fourier, dans le calcul des différentielles à indices quelconques. , 1835 .
[52] E. Scalas,et al. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] K. B. Oldham,et al. Analogue instrumentation for processing polarographic data , 1983 .
[54] Xingyuan Wang,et al. Chaos control of a fractional order modified coupled dynamos system , 2009 .
[55] S. Sakakibara. Properties of Vibration with Fractional Derivative Damping of Order 1/2. , 1997 .
[56] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[57] I. Podlubny,et al. Modelling heat transfer in heterogeneous media using fractional calculus , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[58] Mark M. Meerschaert,et al. A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..
[59] Fawang Liu,et al. Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends , 2005 .
[60] Duggento Andrea,et al. 非定常動力学に対する推論の枠組 II 生理学的シグナリングモデルへの応用 , 2008 .
[61] Ivo Petras,et al. Fractional-Order Nonlinear Systems , 2011 .
[62] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[63] Cem Çelik,et al. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..
[64] Xing-yuan Wang,et al. Dynamic analysis of the fractional-order Liu system and its synchronization. , 2007, Chaos.
[65] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[66] Mark M. Meerschaert,et al. A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..
[67] A. Oustaloup. La dérivation non entière , 1995 .
[68] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..