Resonance Raman study of the solvation of p-nitroaniline in supercritical water

[1]  K. Arai,et al.  Determination of Kamlet-Taft solvent parameters pi* of high pressure and supercritical water by the UV-Vis absorption spectral shift of 4-nitroanisole. , 2006, Physical chemistry chemical physics : PCCP.

[2]  M. Terazima,et al.  Excitation wavelength dependence of the Raman-Stokes shift of N,N-dimethyl-p-nitroaniline. , 2006, The Journal of chemical physics.

[3]  S. Hosokawa,et al.  Collective dynamics of supercritical water , 2005 .

[4]  J. Hazemann,et al.  Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water. , 2005, The Journal of chemical physics.

[5]  H. Weingärtner,et al.  Supercritical water as a solvent. , 2005, Angewandte Chemie.

[6]  ROMA E. OAKES,et al.  Reduced‐size polarized basis sets for calculations of molecular electric properties. II. Simulation of the Raman spectra , 2005, J. Comput. Chem..

[7]  S. Koda,et al.  Raman spectroscopic study on the local structure around O2 in supercritical water , 2004 .

[8]  E. Dinjus,et al.  Chemical reactions of C(1) compounds in near-critical and supercritical water. , 2004, Chemical reviews.

[9]  Y. Yonezawa,et al.  UV spectral shift of benzene in sub- and supercritical water , 2004 .

[10]  Peter Kritzer,et al.  Corrosion in high-temperature and supercritical water and aqueous solutions: a review , 2004 .

[11]  O. Kajimoto,et al.  UV absorption solvatochromic shift of 4-nitroaniline in supercritical water , 2003 .

[12]  Masaru Watanabe,et al.  Estimation of the degree of hydrogen bonding between quinoline and water by ultraviolet–visible absorbance spectroscopy in sub- and supercritical water , 2003 .

[13]  T. Tassaing,et al.  Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure , 2002 .

[14]  Thomas Elsaesser,et al.  Vibrational excitation and energy redistribution after ultrafast internal conversion in 4-nitroaniline , 2002 .

[15]  Andrew M. Moran,et al.  Solvent effects on ground and excited electronic state structures of p-nitroaniline , 2001 .

[16]  M. Halls,et al.  COMPARISON STUDY OF THE PREDICTION OF RAMAN INTENSITIES USING ELECTRONIC STRUCTURE METHODS , 1999 .

[17]  N. Matubayasi,et al.  Structural study of supercritical water. II. Computer simulations , 1999 .

[18]  C. Kato,et al.  Three Distinct Solvated Structures of p-Nitroaniline in Acetonitrile/CCl4 Mixed Solvents: A Combined Singular Value Decomposition Analysis of Ultraviolet Absorption and Raman Spectra , 1999 .

[19]  Susan C. Tucker,et al.  Solvent Density Inhomogeneities in Supercritical Fluids. , 1999, Chemical reviews.

[20]  O. Kajimoto Solvation in Supercritical Fluids: Its Effects on Energy Transfer and Chemical Reactions. , 1999, Chemical reviews.

[21]  M. Arai,et al.  AN IN SITU RAMAN SPECTROSCOPY STUDY OF SUBCRITICAL AND SUPERCRITICAL WATER: THE PECULIARITY OF HYDROGEN BONDING NEAR THE CRITICAL POINT , 1998 .

[22]  A. Fontana,et al.  Light and neutron scattering studies of the OH stretching band in liquid and supercritical water , 1998 .

[23]  François L. Huyskens,et al.  Solvent dependence of the first hyperpolarizability of p-nitroanilines: Differences between nonspecific dipole–dipole interactions and solute–solvent H-bonds , 1998 .

[24]  Nobuyuki Matubayasi,et al.  Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy , 1997 .

[25]  H. Hamaguchi,et al.  Raman Spectroscopic Study on the Two Distinct Solvated Structures of p-Nitroaniline in Acetonitrile. , 1997 .

[26]  Mark S. Conradi,et al.  ARE THERE HYDROGEN BONDS IN SUPERCRITICAL WATER , 1997 .

[27]  W. Peticolas,et al.  Solvent effects on the absorption and Raman spectra of aromatic nitrocompounds. Part 1. Calculation of preresonance Raman intensities , 1986 .

[28]  K. Johnston,et al.  UV-visible absorbance spectroscopy of organic probes in supercritical water , 1994 .