MATHEMATICAL ENGINEERING TECHNICAL REPORTS

[1]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[2]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[3]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[4]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[5]  I Wartenberg,et al.  Convexity-preserving Interpolation by Dual Subdivisions Schemes , 2000 .

[6]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[7]  J. Claes,et al.  A corner-cutting scheme for hexagonal subdivision surfaces , 2002, Proceedings SMI. Shape Modeling International 2002.

[8]  D. Zorin Stationary Subdivision and Multiresolution Surface Representations , 1997 .

[9]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[10]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[11]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[12]  Andrei Khodakovsky,et al.  Hybrid meshes: multiresolution using regular and irregular refinement , 2002, SCG '02.

[13]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[14]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[15]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[16]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[17]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[18]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.