Note on a parameter switching method for nonlinear ODEs

Abstract In this paper we study analytically a parameter switching (PS) algorithm applied to a class of systems of ODE, depending on a single real parameter. The algorithm allows the numerical approximation of any solution of the underlying system by simple periodical switches of the control parameter. Near a general approach of the convergence of the PS algorithm, some dissipative properties are investigated and the dynamical behavior of solutions is investigated with the Lyapunov function method. A numerical example is presented.

[1]  Marius-F. Danca,et al.  Finding attractors of continuous-time systems by parameter switching , 2011, 1102.2178.

[2]  Marius-F. Danca,et al.  An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..

[3]  J. Almeida,et al.  Can two chaotic systems give rise to order , 2004, nlin/0406010.

[4]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[5]  G. Stamov,et al.  Stability analysis of differential equations with maximum , 2013 .

[6]  Michal Fečkan,et al.  Topological Degree Approach to Bifurcation Problems , 2008 .

[7]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[8]  Marius-F. Danca,et al.  Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.

[9]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[10]  Luca Dieci,et al.  A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side , 2012, J. Comput. Appl. Math..

[11]  Marius-F. Danca Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..

[12]  Marius-F. Danca,et al.  Random parameter-switching synthesis of a class of hyperbolic attractors. , 2008, Chaos.

[13]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[14]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[15]  Michael Small,et al.  Deterministic and random synthesis of discrete chaos , 2007, Appl. Math. Comput..

[16]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[17]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.