Note on a parameter switching method for nonlinear ODEs
暂无分享,去创建一个
[1] Marius-F. Danca,et al. Finding attractors of continuous-time systems by parameter switching , 2011, 1102.2178.
[2] Marius-F. Danca,et al. An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..
[3] J. Almeida,et al. Can two chaotic systems give rise to order , 2004, nlin/0406010.
[4] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[5] G. Stamov,et al. Stability analysis of differential equations with maximum , 2013 .
[6] Michal Fečkan,et al. Topological Degree Approach to Bifurcation Problems , 2008 .
[7] N. Rouche,et al. Stability Theory by Liapunov's Direct Method , 1977 .
[8] Marius-F. Danca,et al. Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.
[9] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[10] Luca Dieci,et al. A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side , 2012, J. Comput. Appl. Math..
[11] Marius-F. Danca. Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..
[12] Marius-F. Danca,et al. Random parameter-switching synthesis of a class of hyperbolic attractors. , 2008, Chaos.
[13] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[14] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.
[15] Michael Small,et al. Deterministic and random synthesis of discrete chaos , 2007, Appl. Math. Comput..
[16] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[17] A. Bountis. Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.