Integrating data from remote sensing, geology and gravity for geological investigation in the Tarhunah area, Northwest Libya

Abstract The present work deals with the integration of remote-sensing, surface-geology and gravity-survey data to improve the structural knowledge of the Tarhunah area, northwest Libya. Geological information and remote-sensing data provided information about the surface structure. A gravity survey was conducted to decipher the subsurface structure. The results revealed that a basin having a width of 39 to 48 km trends NE. A two-dimensional (2-D) schematic model shows that the basin gradually deepens toward the southwest. Faults determined from a horizontal gradient, tilt derivative, and Euler deconvolution show a depth range of 2.5 to 7.5 km. The integration and interpretation of the results indicate that volcanic activity was related to the tectonic activity of an anticlinal structure called the Jabal Uplift.

[1]  Vedat Toprak,et al.  Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey , 1998 .

[2]  M. Qari Application of landsat TM data to geological studies, Al-Khabt area, southern Arabian shield , 1991 .

[3]  Vijay Singh,et al.  Potential field tilt—a new concept for location of potential field sources , 1994 .

[4]  Desmond FitzGerald,et al.  New discrimination techniques for Euler deconvolution , 2004, Comput. Geosci..

[5]  Michael W. Berns,et al.  Digital Image Processing and Analysis , 1986 .

[6]  G. Piccoli Outlines of volcanism in Northern Tripolitania (Libya) , 1970 .

[7]  Alcides José Sousa Pereira,et al.  Structural lineaments in a volcanic island evaluated through remote sensing techniques The case of Santiago Island (Cape Verde) , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[8]  J. Harris,et al.  Mapping of Regional Structure of Eastern Nova Scotia Using Remotely Sensed Imagery: Implications for Regional Tectonics and Gold Exploration , 1991 .

[9]  N. Lucas,et al.  Landsat TM analysis of fracture patterns: a case study from the Coastal Cordillera of northern Chile , 2003 .

[10]  Lindrith Cordell,et al.  Mapping Basement Magnetization Zones From Aeromagnetic Data In the San Juan Basin, New Mexico , 1982 .

[11]  I. W. Somerton,et al.  Magnetic interpretation in three dimensions using Euler deconvolution , 1990 .

[12]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .

[13]  B. Bhattacharyya,et al.  ENERGY DENSITY SPECTRUM AND AUTOCORRELATION FUNCTION OF ANOMALIES DUE TO SIMPLE MAGNETIC MODELS , 1966 .

[14]  F. Bilim Investigations into the tectonic lineaments and thermal structure of Kutahya-Denizli region, western Anatolia, from using aeromagnetic, gravity and seismological data , 2007 .

[15]  Jeffrey D. Phillips,et al.  Processing and interpretation of aeromagnetic data for the Santa Cruz Basin - Patagonia Mountains area, south-central Arizona , 2002 .

[16]  J. Bamber,et al.  Subglacial geology in Coats Land, East Antarctica, revealed by airborne magnetics and radar sounding , 2006 .

[17]  Fuzuli Yağmurlu,et al.  A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey) , 2006 .

[18]  M. Torné,et al.  The lithosphere–asthenosphere boundary in the western Mediterranean from 3D joint gravity and geoid modeling: tectonic implications , 2003 .

[19]  D. FitzGerald,et al.  Euler Deconvolution of Gravity Data , 2003 .

[20]  G. H. Goudarzi Geology and mineral resources of Libya - a reconnaissance , 1970 .

[21]  Ali Yassaghi,et al.  Integration of Landsat imagery interpretation and geomagentic data on verification of deep‐seated transverse fault lineaments in SE Zagros, Iran , 2006 .

[22]  Curt H. Davis,et al.  International Geoscience and Remote Sensing Symposium (IGARSS) , 2003 .

[23]  Gordon R. J. Cooper,et al.  Enhancing potential field data using filters based on the local phase , 2006, Comput. Geosci..

[24]  Huifen. Chen,et al.  Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin , 2008 .

[25]  M. Landisman,et al.  Rapid gravity computations for two‐dimensional bodies with application to the Mendocino submarine fracture zone , 1959 .

[26]  R. Stephenson,et al.  Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and Russia) from gravity and seismic data , 2004 .

[27]  F. Kadirov Application of the Hartley transform for interpretation of gravity anomalies in the Shamakhy–Gobustan and Absheron oil- and gas-bearing regions, Azerbaijan , 2000 .

[28]  Robert W. Simpson,et al.  Approximating edges of source bodies from magnetic or gravity anomalies , 1986 .

[29]  T. Kusky,et al.  Structural and remote sensing studies of the southern Betsimisaraka Suture, Madagascar , 2006 .

[30]  P. Keating,et al.  Seismotectonic characteristics of the Lower St. Lawrence Seismic Zone, Quebec: insights from geology, magnetics, gravity, and seismics , 2003 .

[31]  A. Fraser,et al.  A satellite remote sensing technique for geological structure horizon mapping , 1997 .

[32]  A. A. D. Canas,et al.  The generation and interpretation of false-colour composite principal component images , 1985 .

[33]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[34]  Bruno Verduzco,et al.  The meter readerNew insights into magnetic derivatives for structural mapping , 2004 .

[35]  D. T. Thompson,et al.  EULDPH: A new technique for making computer-assisted depth estimates from magnetic data , 1982 .

[36]  Classifying depth‐layered geological structures on Landsat TM images by gravity data: a case study of the western slope of Songliao Basin, northeast China , 2005 .

[37]  Armand Galdeano,et al.  Interpretation of the aeromagnetic map of Eastern Hoggar (Algeria) using the Euler deconvolution, analytic signal and local wavenumber methods , 2003 .

[38]  K. Wester,et al.  A GIS based analysis of data from Landsat TM, airborne geophysical measurements, and digital maps for geological remote sensing in the Stockholm region, Sweden , 2001 .

[39]  Lindrith Cordell,et al.  Gravimetric expression of graben faulting in Santa Fe country and the Espanola Basin, New Mexico , 1979, Santa Fe Country.

[40]  M. Pilkington Locating geologic contacts with magnitude transforms of magnetic data , 2007 .

[41]  E. Tawadros Geology of Egypt and Libya , 2000 .

[42]  E. Klingelé,et al.  AUTOMATIC INTERPRETATION OF GRAVITY GRADIOMETRIC DATA IN TWO DIMENSIONS: VERTICAL GRADIENT1 , 1991 .

[43]  P. F. Burollet,et al.  Structures and tectonics of Tunisia , 1991 .

[44]  J. Fairhead,et al.  Euler: Beyond the “Black Box” , 1994 .

[45]  Demetre Argialas,et al.  Implementation and evaluation of spatial filtering and edge detection techniques for lineament mapping: case study - Alevrada, Central Greece , 2003, SPIE Remote Sensing.

[46]  I. Marson,et al.  Advantages of using the vertical gradient of gravity for 3-D interpretation , 1993 .

[47]  Mollniillned Yozlsef H. T. Qari Application of Landsat TM Data to Geological Studies, Al-Khabt Area, Southern ~ r a b i a n Shield , 2006 .

[48]  A. Reid,et al.  Euler magnetic structural index of a thin‐bed fault , 2003 .

[49]  R. Clark,et al.  Combined Study of Euler's Homogeneity Equation for Gravity and Magnetic Field , 1995 .

[50]  E. Nama Technical note: Lineament detection on Mount Cameroon during the 1999 volcanic eruptions using Landsat ETM , 2004 .

[51]  A. Jawad,et al.  Computer processing of remotely sensed images , 2005 .

[52]  S. Krause,et al.  The Central Andean gravity high, a relic of an old subduction complex? , 2002 .

[53]  Enhancement of thematic mapper satellite images for geological mapping of the Cho Dien area, Northern Vietnam , 2003 .

[54]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[55]  Zong-jin Ma,et al.  Analysis and Tectonic Interpretation to the Horizontal-Gradient Map Calculated from Bouguer Gravity Data in the China Mainland , 2006 .

[56]  Z. Tašárová Towards understanding the lithospheric structure of the southern Chilean subduction zone (36°S–42°S) and its role in the gravity field , 2007 .