Expansion and collapse of spherical source with cosmological constant
暂无分享,去创建一个
[1] S. Shah,et al. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach , 2017, 1801.05014.
[2] P. M. Lo. S-matrix formulation of thermodynamics with N-body scatterings , 2017, 1707.04490.
[3] G. Abbas,et al. Models of collapsing and expanding anisotropic gravitating source in f(R, T) theory of gravity , 2017, 1706.08846.
[4] M. Zubair,et al. Higher-dimensional inhomogeneous perfect fluid collapse in f(R) gravity , 2017, 1706.07657.
[5] S. Shah,et al. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux , 2017, 1703.08441.
[6] E. N. Glass. Generating anisotropic collapse and expansion solutions of Einstein’s equations , 2013, 1309.7092.
[7] M. Azam,et al. Dynamical instability of collapsing radiating fluid , 2013 .
[8] M. Sharif,et al. The stability of a shearing viscous star with an electromagnetic field , 2013, 1406.2359.
[9] M. Azam,et al. Effects of electromagnetic field on the dynamical instability of cylindrical collapse , 2012, 1203.3799.
[10] L. Herrera,et al. Cylindrically symmetric relativistic fluids: a study based on structure scalars , 2012, 1201.2862.
[11] L. Herrera,et al. Dynamical instability and the expansion-free condition , 2010, 1010.1518.
[12] N. O. Santos,et al. Shearing expansion-free spherical anisotropic fluid evolution , 2008, 0810.1083.
[13] M. Sharif,et al. Plane Symmetric Gravitational Collapse , 2007, 0709.3139.
[14] S. Ghosh,et al. Higher dimensional dust collapse with a cosmological constant , 2006, gr-qc/0607142.
[15] L. Herrera,et al. The Inertia of heat and its role in the dynamics of dissipative collapse , 2006, gr-qc/0701073.
[16] M. Sharif,et al. GRAVITATIONAL PERFECT FLUID COLLAPSE WITH COSMOLOGICAL CONSTANT , 2006, gr-qc/0610033.
[17] U. Debnath,et al. Quasi-spherical collapse with cosmological constant , 2006, gr-qc/0604089.
[18] L. Herrera,et al. Dynamics of dissipative gravitational collapse , 2004, gr-qc/0410014.
[19] L. Herrera,et al. Shear-free and homology conditions for self-gravitating dissipative fluids , 2003, gr-qc/0305005.
[20] K. Lake. Gravitational Collapse of Dust with a Cosmological Constant , 2000, gr-qc/0002044.
[21] D. Shapiro. Gravitational collapse with a cosmological constant , 1999, gr-qc/9912066.
[22] J. Barrow,et al. Anisotropic stresses in inhomogeneous universes , 1998, astro-ph/9808268.
[23] A. Prisco,et al. On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse , 1997, gr-qc/9711002.
[24] L. Herrera,et al. Local anisotropy in self-gravitating systems , 1997 .
[25] Henriksen,et al. General relativistic collapse of homothetic ideal gas spheres and planes. , 1993, Physical review. D, Particles and fields.
[26] T. Piran,et al. Naked singularities and other features of self-similar general-relativistic gravitational collapse. , 1990, Physical review. D, Particles and fields.
[27] N. O. Santos,et al. Dynamical instability for non-adiabatic spherical collapse , 1989 .
[28] T. Piran,et al. Self-similar spherical gravitational collapse and the cosmic censorship hypothesis , 1988 .
[29] T. Piran,et al. Naked singularities in self-similar spherical gravitational collapse. , 1987, Physical review letters.
[30] N. Santos. Collapse of a radiating viscous fluid , 1984 .
[31] C. W. Misner. RELATIVISTIC EQUATIONS FOR SPHERICAL GRAVITATIONAL COLLAPSE WITH ESCAPING NEUTRINOS , 1965 .
[32] D. Sharp,et al. RELATIVISTIC EQUATIONS FOR ADIABATIC, SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE , 1964 .
[33] P. C. Vaidya. The gravitational field of a radiating star , 1951 .
[34] J. Oppenheimer,et al. On Continued Gravitational Contraction , 1939 .