Extending Winograd's small convolution algorithm to longer lengths
暂无分享,去创建一个
[1] C. Sidney Burrus,et al. On the structure of efficient DFT algorithms , 1985, IEEE Trans. Acoust. Speech Signal Process..
[2] C. Burrus,et al. The design of optimal DFT algorithms using dynamic programming , 1982, ICASSP.
[3] R. Stasinski. Easy generation of small-Ndiscrete Fourier transform algorithms , 1986 .
[4] H. Nussbaumer. Fast Fourier transform and convolution algorithms , 1981 .
[5] C. Rader. Discrete Fourier transforms when the number of data samples is prime , 1968 .
[6] R.C. Agarwal,et al. Number theory in digital signal processing , 1980, Proceedings of the IEEE.
[7] S. Winograd. Arithmetic complexity of computations , 1980 .
[8] Charles M. Rader,et al. Number theory in digital signal processing , 1979 .
[9] J. Cooley,et al. New algorithms for digital convolution , 1977 .
[10] Richard E. Blahut,et al. Fast Algorithms for Digital Signal Processing , 1985 .
[11] H. Nussbaumer,et al. Fast polynomial transform algorithms for digital convolution , 1980 .
[12] C. Sidney Burrus,et al. Multidimensional mapping techniques for convolution , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.