Improve Temporal Fourier Transform Profilometry for Complex Dynamic Three-Dimensional Shape Measurement

The high-speed three-dimensional (3-D) shape measurement technique has become more and more popular recently, because of the strong demand for dynamic scene measurement. The single-shot nature of Fourier Transform Profilometry (FTP) makes it highly suitable for the 3-D shape measurement of dynamic scenes. However, due to the band-pass filter, FTP method has limitations for measuring objects with sharp edges, abrupt change or non-uniform reflectivity. In this paper, an improved Temporal Fourier Transform Profilometry (TFTP) algorithm combined with the 3-D phase unwrapping algorithm based on a reference plane is presented, and the measurement of one deformed fringe pattern producing a new 3-D shape of an isolated abrupt objects has been achieved. Improved TFTP method avoids band-pass filter in spatial domain and unwraps 3-D phase distribution along the temporal axis based on the reference plane. The high-frequency information of the measured object can be well preserved, and each pixel is processed separately. Experiments verify that our method can be well applied to a dynamic 3-D shape measurement with isolated, sharp edges or abrupt change. A high-speed and low-cost structured light pattern sequence projection has also been presented, it is capable of projection frequencies in the kHz level. Using the proposed 3-D shape measurement algorithm with the self-made mechanical projector, we demonstrated dynamic 3-D reconstruction with a rate of 297 Hz, which is mainly limited by the speed of the camera.

[1]  Song Zhang,et al.  A fast three-step phase-shifting algorithm , 2005, SPIE Optics East.

[2]  Yicheng Wang,et al.  Motion induced phase error reduction using a Hilbert transform. , 2018, Optics express.

[3]  Song Zhang,et al.  High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method. , 2006, Optics express.

[4]  HANG,et al.  High-speed and high-accuracy 3 D surface measurement using a mechanical projector , 2018 .

[5]  Robert Schmitt,et al.  Fast and low-cost structured light pattern sequence projection. , 2011, Optics express.

[6]  Andreas Tünnermann,et al.  GOBO projection for 3D measurements at highest frame rates: a performance analysis , 2018, Light: Science & Applications.

[7]  Qican Zhang,et al.  High Speed 3D Shape Measurement with Temporal Fourier Transform Profilometry , 2019 .

[8]  A. Tünnermann,et al.  High-speed three-dimensional shape measurement using GOBO projection , 2016 .

[9]  J. M. Huntley,et al.  Temporal phase-unwrapping algorithm for automated interferogram analysis. , 1993, Applied optics.

[10]  Yu. N. Solodkin,et al.  Automatic processing of fringe patterns in integer interferometers , 1991 .

[11]  Song Zhang,et al.  High-speed 3D shape measurement with structured light methods: A review , 2018, Optics and Lasers in Engineering.

[12]  Song Zhang,et al.  Flexible 3-D shape measurement using projector defocusing. , 2009, Optics letters.

[13]  Song Zhang Recent progresses on real-time 3D shape measurement using digital fringe projection techniques , 2010 .

[14]  Jae-Sang Hyun,et al.  High-speed and high-accuracy 3D surface measurement using a mechanical projector. , 2018, Optics express.

[15]  Qican Zhang,et al.  Dynamic 3-D shape measurement method: A review , 2010 .

[16]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[17]  Xianyu Su,et al.  Reliability-guided phase unwrapping algorithm: a review ☆ , 2004 .

[18]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[19]  X. Su,et al.  Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation , 1993 .

[20]  Thomas J. Flynn,et al.  TWO-DIMENSIONAL PHASE UNWRAPPING WITH MINIMUM WEIGHTED DISCONTINUITY , 1997 .

[21]  Ziping Liu,et al.  Motion-induced error compensation for phase shifting profilometry. , 2018, Optics express.

[22]  Jingang Zhong,et al.  Phase retrieval of optical fringe patterns from the ridge of a wavelet transform. , 2005, Optics letters.

[23]  J C Wyant,et al.  Two-wavelength phase shifting interferometry. , 1984, Applied optics.

[24]  Zibang Zhang,et al.  Applicability analysis of wavelet-transform profilometry. , 2013, Optics express.

[25]  W Li,et al.  Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method. , 2001, Applied optics.

[26]  Xianyu Su,et al.  Fourier transform profilometry:: a review , 2001 .

[27]  V. Srinivasan,et al.  Automated phase-measuring profilometry of 3-D diffuse objects. , 1984, Applied optics.

[28]  Lei Huang,et al.  Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review , 2016 .

[29]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis. , 2004, Applied optics.