The Presequence Translocase-associated Protein Import Motor of Mitochondria

Transport of preproteins into the mitochondrial matrix requires the presequence translocase of the inner membrane (TIM23 complex) and the presequence translocase-associated motor (PAM). The motor consists of five essential subunits, the mitochondrial heat shock protein 70 (mtHsp70) and four cochaperones, the nucleotide exchange-factor Mge1, the translocase-associated fulcrum Tim44, the J-protein Pam18, and Pam16. Pam16 forms a complex with Pam18 and displays similarity to J-proteins but lacks the canonical tripeptide motif His-Pro-Asp (HPD). We report that Pam16 does not function as a typical J-domain protein but, rather, antagonizes the function of Pam18. Pam16 specifically inhibits the Pam18-mediated stimulation of the ATPase activity of mtHsp70. The inclusion of the HPD motif in Pam16 does not confer the ability to stimulate mtHsp70 activity. Pam16-HPD fully substitutes for wild-type Pam16 in vitro and in vivo but is not able to replace Pam18. Pam16 represents a new type of cochaperone that controls the stimulatory effect of the J-protein Pam18 and regulates the interaction of mtHsp70 with precursor proteins during import into mitochondria.

[1]  W. Neupert,et al.  Protein import into mitochondria. , 1997, Annual review of biochemistry.

[2]  N. Pfanner,et al.  Mitochondrial import and the twin-pore translocase , 2004, Nature Reviews Molecular Cell Biology.

[3]  N. Pfanner,et al.  The Protein Import Machinery of Mitochondria* , 2004, Journal of Biological Chemistry.

[4]  C. Kozany,et al.  The J domain–related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase , 2004, Nature Structural &Molecular Biology.

[5]  N. Pfanner,et al.  Pam16 has an essential role in the mitochondrial protein import motor , 2004, Nature Structural &Molecular Biology.

[6]  N. Pfanner,et al.  A J-protein is an essential subunit of the presequence translocase–associated protein import motor of mitochondria , 2003, The Journal of cell biology.

[7]  E. Craig,et al.  J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  N. Pfanner,et al.  Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM–TIM–preprotein supercomplex , 2003, The EMBO journal.

[9]  D. Mokranjac,et al.  Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria , 2003, The EMBO journal.

[10]  T. Endo,et al.  Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles , 2003, Journal of Cell Science.

[11]  N. Pfanner,et al.  Mechanisms of Protein Import into Mitochondria , 2003, Current Biology.

[12]  E. Craig,et al.  Regulated Cycling of Mitochondrial Hsp70 at the Protein Import Channel , 2003, Science.

[13]  R. Jensen,et al.  Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. , 2002, Biochimica et biophysica acta.

[14]  W. Neupert,et al.  The protein import motor of mitochondria , 2002, Nature Reviews Molecular Cell Biology.

[15]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[16]  A. Merlin,et al.  A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23 , 2001, Nature Structural Biology.

[17]  Wolfgang Voos,et al.  Mitochondrial Import Driving Forces: Enhanced Trapping by Matrix Hsp70 Stimulates Translocation and Reduces the Membrane Potential Dependence of Loosely Folded Preproteins , 2001, Molecular and Cellular Biology.

[18]  I. Scheffler,et al.  A century of mitochondrial research: achievements and perspectives. , 2001, Mitochondrion.

[19]  D. Pain,et al.  J-domain Protein, Jac1p, of Yeast Mitochondria Required for Iron Homeostasis and Activity of Fe-S Cluster Proteins* , 2001, The Journal of Biological Chemistry.

[20]  N. Pfanner,et al.  Protein unfolding by mitochondria , 2000, EMBO reports.

[21]  W. Neupert,et al.  What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. , 2000, Biochimica et biophysica acta.

[22]  N. Pfanner,et al.  The Mitochondrial Protein Import Motor , 2000, Biological chemistry.

[23]  N. Pfanner,et al.  Mechanisms of protein translocation into mitochondria. , 1999, Biochimica et biophysica acta.

[24]  S. Merchant,et al.  How membrane proteins travel across the mitochondrial intermembrane space. , 1999, Trends in biochemical sciences.

[25]  Carol A. Gross,et al.  Structural Features Required for the Interaction of the Hsp70 Molecular Chaperone DnaK with Its Cochaperone DnaJ* , 1999, The Journal of Biological Chemistry.

[26]  Wolfgang Voos,et al.  The Protein Import Motor of Mitochondria Unfolding and Trapping of Preproteins Are Distinct and Separable Functions of Matrix Hsp70 , 1999, Cell.

[27]  A. Fink Chaperone-mediated protein folding. , 1999, Physiological reviews.

[28]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[29]  S. Landry,et al.  Role of the J-domain in the cooperation of Hsp40 with Hsp70. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[31]  W. Neupert,et al.  Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae. , 1997, Journal of molecular biology.

[32]  N. Pfanner,et al.  Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70. , 1997, Journal of molecular biology.

[33]  E. Craig,et al.  Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. , 1997, Journal of molecular biology.

[34]  W. Neupert,et al.  The nucleotide exchange factor MGE exerts a key function in the ATP‐dependent cycle of mt‐Hsp70‐Tim44 interaction driving mitochondrial protein import. , 1996, The EMBO journal.

[35]  A. Karzai,et al.  A Bipartite Signaling Mechanism Involved in DnaJ-mediated Activation of the Escherichia coli DnaK Protein (*) , 1996, The Journal of Biological Chemistry.

[36]  K. Wüthrich,et al.  NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2-108) containing the highly conserved J domain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  W. Neupert,et al.  The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. , 1994, Science.

[38]  B. Barrell,et al.  Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding , 1994, Cell.

[39]  T. Langer,et al.  DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. , 1994, Trends in biochemical sciences.

[40]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[41]  M. Eilers,et al.  Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria , 1986, Nature.

[42]  M. Mayer Timing the catch , 2004, Nature Structural &Molecular Biology.

[43]  N. Pfanner,et al.  Assaying protein import into mitochondria. , 2001, Methods in cell biology.

[44]  W. Neupert,et al.  Analysis of mitochondrial protein import pathway in Saccharomyces cerevisiae with translocation intermediates. , 1995, Methods in enzymology.