Almost sure central limit theorem for the products of U-statistics

Let (Xn) be a sequence of i.i.d random variables and Un a U-statistic corresponding to a symmetric kernel function h, where h1(x1) = Eh(x1, X2, X3, . . . , Xm), μ = E(h(X1, X2, . . . , Xm)) and ς1 = Var(h1(X1)). Denote $${\gamma=\sqrt{\varsigma_{1}}/\mu}$$, the coefficient of variation. Assume that P(h(X1, X2, . . . , Xm) > 0) = 1, ς1 > 0 and E|h(X1, X2, . . . , Xm)|3 < ∞. We give herein the conditions under which $$\lim_{N\rightarrow\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}g\left(\left(\prod_{k=m}^{n}\frac{U_{k}}{\mu}\right)^{\frac{1}{m\gamma\sqrt{n}}}\right) =\int\limits_{-\infty}^{\infty}g(x)dF(x)\quad {\rm a.s.}$$ for a certain family of unbounded measurable functions g, where F(·) is the distribution function of the random variable $${\exp(\sqrt{2} \xi)}$$ and ξ is a standard normal random variable.

[1]  Grzegorz A. Rempala,et al.  ELECTRONICCOMMUNICATIONSinPROBABILITY ASYMPTOTICS FOR PRODUCTS OF SUMS AND U -STATISTICS , 2022 .

[2]  I. Ibragimov,et al.  On the convergence of generalized moments in almost sure central limit theorem , 1998 .

[3]  Deli Li,et al.  Laws of the iterated logarithm for weighted sums of independent random variables , 1996 .

[4]  I. Berkes,et al.  Almost sure central limit theorems under minimal conditions , 1998 .

[5]  Endre Csáki,et al.  A universal result in almost sure central limit theory , 2001 .

[6]  Jianjun Xu,et al.  Almost sure central limit theorems for random functions , 2006 .

[7]  Grzegorz A. Rempala,et al.  A note on the almost sure limit theorem for the product of partial sums , 2006, Appl. Math. Lett..

[8]  A. Min,et al.  Almost sure limit theorems for U-statistics , 2004 .

[9]  M. Katz,et al.  Convergence rates for the central limit theorem. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Gunnar A. Brosamler,et al.  An almost everywhere central limit theorem , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Peter Schatte,et al.  On Strong Versions of the Central Limit Theorem , 1988 .

[12]  Khurelbaatar Gonchigdanzan A note on the almost sure limit theorem for U-statistic , 2005, Period. Math. Hung..

[13]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[14]  William Feller,et al.  The Law of the Iterated Logarithm for Identically Distributed Random Variables , 1946 .

[15]  V. V. Petrov Sums of Independent Random Variables , 1975 .