An empirical approach to modeling ion production rates in Titan's ionosphere II: Ion production rates on the nightside

Ionization of neutrals by precipitating electrons and ions is the main source of Titan's nightside ionosphere. This paper has two goals: (1) characterization of the role of electron impact ionization on the nightside ionosphere for different magnetospheric conditions and (2) presentation of empirical ion production rates determined using densities measured by the Cassini Ion and Neutral Mass Spectrometer on the nightside. The ionosphere between 1000 and 1400 km is emphasized. We adopt electron fluxes measured by the Cassini Plasma Spectrometer-Electron Spectrometer and the Magnetospheric Imaging Instrument as classified by Rymer et al. (2009). The current paper follows an earlier paper (Paper I), in which we investigated sources of Titan's dayside ionosphere and demonstrated that the photoionization process is well understood. The current paper (Paper II) demonstrates that modeled and empirical ionization rates on the nightside are in agreement with an electron precipitation source above 1100 km. Ion production rate profiles appropriate for different Saturnian magnetospheric conditions, as outlined by Rymer et al., are constructed for various magnetic field topologies. Empirical production rate profiles are generated for deep nightside flybys of Titan. The results also suggest that at lower altitudes (below 1100 km) another source, such as ion precipitation, is probably needed.

[1]  A. Nagy,et al.  Unusual electron density profiles observed by Cassini radio occultations in Titan's ionosphere: Effects of enhanced magnetospheric electron precipitation? , 2011 .

[2]  Y. Yung,et al.  Source of Nitrogen Isotope Anomaly in HCN in the Atmosphere of Titan , 2007 .

[3]  T. Cravens,et al.  The ionosphere of Titan: an updated theoretical model , 2004 .

[4]  N Achilleos,et al.  The Magnetic Memory of Titan's Ionized Atmosphere , 2008, Science.

[5]  Gary J. Rottman,et al.  The SOLAR2000 empirical solar irradiance model and forecast tool , 2000 .

[6]  J. Wahlund,et al.  Composition and Structure of the Ionosphere and Thermosphere , 2009 .

[7]  V. Anicich An index of the literature for bimolecular gas phase cation-molecule reaction kinetics , 2003 .

[8]  Jain Total (elastic+absorption) cross sections for e-CH4 collisions in a spherical model at 0.10-500 eV. , 1986, Physical review. A, General physics.

[9]  C. Russell,et al.  Investigating magnetospheric interaction effects on Titan's ionosphere with the Cassini orbiter Ion Neutral Mass Spectrometer, Langmuir Probe and magnetometer observations during targeted flybys , 2012 .

[10]  A. Chutjian,et al.  Electron scattering by molecules II. Experimental methods and data , 1983 .

[11]  Hiroshi Tanaka,et al.  Vibrational excitation of CH4 by electron impact: 3-20 eV , 1983 .

[12]  R. W. Ditchburn Absorption cross-sections in the vacuum ultra-violet III. Methane , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  A. Kingston,et al.  Electron Impact Excitation , 1989 .

[14]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[15]  J. Wahlund,et al.  Titan's ionospheric composition and structure: Photochemical modeling of Cassini INMS data , 2012 .

[16]  Roger V. Yelle,et al.  Formation and distribution of benzene on Titan , 2008 .

[17]  D. Shemansky,et al.  Analysis of electron impact ionization properties of methane , 2006 .

[18]  S. Atreya,et al.  Titan's ion exosphere observed from Voyager 1 , 1982 .

[19]  T. Cravens,et al.  A model of the ionosphere of Titan , 1992 .

[20]  S. Asmar,et al.  First results from the Cassini radio occultations of the Titan ionosphere , 2008 .

[21]  A. Green,et al.  Semi-empirical cross sections for electron impacts. , 1967 .

[22]  A. Jain,et al.  CORRIGENDUM: Rotational excitation of CH4 and H2O by slow electron impact , 1983 .

[23]  J. Cui Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements in the Closed Source Neutral mode , 2009 .

[24]  W. Ip,et al.  Titan's ionosphere: Model comparisons with Cassini Ta data , 2005 .

[25]  Andrew J. Coates,et al.  Titan's plasma environment during a magnetosheath excursion: Real-time scenarios for Cassini's T32 flyby from a hybrid simulation , 2009 .

[26]  A. Nagy,et al.  Photoelectron fluxes in the ionosphere , 1970 .

[27]  Thomas E. Cravens,et al.  Energy Deposition Processes in Titan's Upper Atmosphere , 2008 .

[28]  J. Waite,et al.  Model-data comparisons for Titan's nightside ionosphere , 2009 .

[29]  E. C. Zipf,et al.  On the dissociation of nitrogen by electron impact and by E.U.V. photo-absorption , 1978 .

[30]  M. Banaszkiewicz,et al.  A Coupled Model of Titan's Atmosphere and Ionosphere , 2000 .

[31]  C. Russell,et al.  Time‐dependent global MHD simulations of Cassini T32 flyby: From magnetosphere to magnetosheath , 2009 .

[32]  V. Anicich,et al.  Ion-molecule chemistry in Titan's ionosphere , 1997 .

[33]  V. Anicich,et al.  Titan's ion chemistry: a laboratory perspective. , 2007, Mass spectrometry reviews.

[34]  J. Ẑabka,et al.  Reactivity of C2H5+ with benzene: formation of ethylbenzenium ions and implications for Titan's ionospheric chemistry. , 2009, The journal of physical chemistry. A.

[35]  Nicholas Achilleos,et al.  Thermal electron periodicities at 20RS in Saturn's magnetosphere , 2008 .

[36]  H. Lammer,et al.  Ionospheric layer induced by meteoric ionization in Titan's atmosphere , 2001 .

[37]  S. Brecht,et al.  The orientation of Titan’s dayside ionosphere and its effects on Titan’s plasma interaction , 2012, Earth, Planets and Space.

[38]  McKoy,et al.  Cross sections for rotational excitation of CH4 by 3-20-eV electrons. , 1989, Physical review. A, General physics.

[39]  Jean Lilensten,et al.  A fast computation of the diurnal secondary ion production in the ionosphere of Titan , 2005 .

[40]  S. Debei,et al.  In situ measurements of the physical characteristics of Titan's environment , 2005, Nature.

[41]  A. Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part II: Results and validation with Cassini/Huygens data , 2008 .

[42]  A. Coates,et al.  Auroral electron precipitation and flux tube erosion in Titan’s upper atmosphere , 2013 .

[43]  P. Canu,et al.  On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study , 2007 .

[44]  Robert W. Schunk,et al.  Ionospheres by Robert Schunk , 2009 .

[45]  J. Wahlund,et al.  Negative ion chemistry in Titan's upper atmosphere , 2008 .

[46]  James F. Carbary,et al.  Charged particle periodicity in the Saturnian magnetosphere , 1982 .

[47]  M. Dougherty,et al.  Comparisons between MHD model calculations and observations of Cassini flybys of Titan , 2006 .

[48]  Carl P. Simon,et al.  Prediction of a N2++ layer in the upper atmosphere of Titan , 2005 .

[49]  T. Hill,et al.  Ionospheric electrons in Titan's tail: Plasma structure during the Cassini T9 encounter , 2007 .

[50]  J. Lilensten,et al.  The Ionosphere of Titan: Ideal Diurnal and Nocturnal Cases , 1999 .

[51]  Christopher T. Russell,et al.  Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure , 2006 .

[52]  N. Krupp,et al.  Charged particle periodicities in Saturn's outer magnetosphere , 2007 .

[53]  D. Gell,et al.  INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison , 2009 .

[54]  Paul B. Hays,et al.  The auroral 6300 Å emission: Observations and modeling , 1988 .

[55]  Loren W. Acton,et al.  Deriving solar X ray irradiance from Yohkoh observations , 1999 .

[56]  K. Rohr Cross beam experiment for the scattering of low-energy electrons from methane , 1980 .

[57]  H. Porter,et al.  Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air , 1976 .

[58]  D. Young,et al.  Heavy ions, temperatures and winds in Titan's ionosphere: Combined Cassini CAPS and INMS observations , 2009 .

[59]  S. Trajmar,et al.  Electron impact excitation of methane , 1983 .

[60]  J. Waite,et al.  The Process of Tholin Formation in Titan's Upper Atmosphere , 2007, Science.

[61]  C. A. Grady,et al.  THE MOVING GROUP TARGETS OF THE SEEDS HIGH-CONTRAST IMAGING SURVEY OF EXOPLANETS AND DISKS: RESULTS AND OBSERVATIONS FROM THE FIRST THREE YEARS , 2013, 1305.7264.

[62]  David T. Young,et al.  Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations , 2012 .

[63]  J. Waite,et al.  Ion transport in Titan's upper atmosphere , 2010 .

[64]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[65]  J. Wahlund,et al.  Detection of negative ions in the deep ionosphere of Titan during the Cassini T70 flyby , 2012 .

[66]  J. Wahlund,et al.  Energetics of Titan's ionosphere: Model comparisons with Cassini data , 2011 .

[67]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Nitrogen Molecules , 2006 .

[68]  J. H. Waite,et al.  Composition of Titan's ionosphere , 2006 .

[69]  Thomas E. Cravens,et al.  An empirical approach to modeling ion production rates in Titan's ionosphere I: Ion production rates on the dayside and globally , 2015 .

[70]  Roger V. Yelle,et al.  The Nitrogen Chemistry of Titan’s Upper Atmosphere Revealed , 2006 .

[71]  T. Shirai,et al.  Analytic cross sections for electron impact collisions with nitrogen molecules , 2006 .

[72]  A. Green,et al.  Ionization cross sections and secondary electron distributions , 1972 .

[73]  S. Asmar,et al.  Possible Detection of Titan's Ionosphere from Voyager 1 Radio Occultation Observations , 1995 .

[74]  M. Dougherty,et al.  Extreme densities in Titan's ionosphere during the T85 magnetosheath encounter , 2013 .

[75]  N. Achilleos,et al.  The variability of Titan's magnetic environment , 2009 .

[76]  R E Johnson,et al.  Composition and Dynamics of Plasma in Saturn's Magnetosphere , 2005, Science.

[77]  V. Krasnopolsky A photochemical model of Titan's atmosphere and ionosphere , 2009 .

[78]  J. Wahlund,et al.  Ionization sources in Titan's deep ionosphere , 2010 .

[79]  J. McLain,et al.  Flowing afterglow studies of the temperature dependencies for dissociative recombination of O2+, CH5+, C2H5+, and C6H7+ with electrons , 2004 .

[80]  J. Wahlund,et al.  Negative ion densities in the ionosphere of Titan–Cassini RPWS/LP results , 2013 .

[81]  J. McLain,et al.  Flowing afterglow studies of temperature dependencies for electron dissociative recombination of HCNH+, CH3CNH+ and CH3CH2CNH+ and their symmetrical proton-bound dimers , 2009 .

[82]  N. André,et al.  Derivation of density and temperature from the Cassini–Huygens CAPS electron spectrometer , 2008 .

[83]  P. Canu,et al.  Cassini Measurements of Cold Plasma in the Ionosphere of Titan , 2005, Science.

[84]  J. Wahlund,et al.  On the ionospheric structure of Titan , 2009 .

[85]  D. C. Cartwright,et al.  Electron impact excitation of the electronic states of N 2 . I. Differential cross sections at incident energies from 10 to 50 eV , 1977 .

[86]  P. Lavvas,et al.  Energy deposition and primary chemical products in Titan’s upper atmosphere , 2010 .

[87]  Thomas E. Cravens,et al.  Energetic ion precipitation at Titan , 2008 .

[88]  J. Wahlund,et al.  Electron temperature of Titan's sunlit ionosphere , 2006 .

[89]  Heidi L. K. Manning,et al.  Cassini orbiter ion and neutral mass spectrometer instrument , 1996, Optics & Photonics.

[90]  K. A. Smith,et al.  Absolute partial cross sections for electron-impact ionization of CH4 from threshold to 1000 eV , 1997 .

[91]  J. Wahlund,et al.  Investigation of the force balance in the Titan ionosphere: Cassini T5 flyby model/data comparisons , 2010 .

[92]  Edmond C. Roelof,et al.  Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini , 2009 .

[93]  Jean Lilensten,et al.  Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines , 2009 .

[94]  M. McEwan,et al.  The ion chemistry of methylenimine and propionitrile and their relevance to Titan , 2008 .

[95]  D. Young,et al.  Discrete classification and electron energy spectra of Titan's varied magnetospheric environment , 2009 .

[96]  T. Cravens,et al.  Model of Titans ionosphere with detailed hydrocarbon ion chemistry , 1998 .

[97]  J. Wahlund,et al.  INCREASING POSITIVE ION NUMBER DENSITIES BELOW THE PEAK OF ION–ELECTRON PAIR PRODUCTION IN TITAN'S IONOSPHERE , 2014 .

[98]  J. Waite,et al.  Cassini CAPS‐ELS observations of negative ions in Titan's ionosphere: Trends of density with altitude , 2013 .

[99]  Robert E. Johnson,et al.  The role of ion-neutral collisions in Titan׳s magnetospheric interaction , 2013 .

[100]  David T. Young,et al.  Discovery of heavy negative ions in Titan's ionosphere , 2007 .

[101]  J. Lilensten,et al.  Ionization processes in the atmosphere of Titan: I. Ionization in the whole atmosphere , 2009 .

[102]  J. Waite,et al.  Dynamical and Magnetic Field Time Constants for Titan's Ionosphere - Empirical Estimates , 2010 .

[103]  S. Chu,et al.  Rotational excitation of CH+ by electron impact , 1974 .

[104]  C. Bertucci,et al.  Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape , 2010 .

[105]  Athena Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part I: Model description , 2008 .

[106]  W. Sohn,et al.  Rotational excitation of CH4 by low-energy-electron collisions , 1985 .

[107]  M. Zelikoff,et al.  ABSORPTION COEFFICIENTS OF SEVERAL ATMOSPHERIC GASES , 1953 .

[108]  T. Cravens,et al.  Electrons in the ionosphere of Titan , 1992 .

[109]  R. Stolarski,et al.  Analytic models of electron impact excitation cross sections , 1972 .

[110]  S. Atreya,et al.  Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere , 2004 .

[111]  W. Sohn,et al.  Threshold structures in the cross sections of low-energy electron scattering of methane , 1983 .

[112]  J. Wahlund,et al.  Structure of Titan's ionosphere: Model comparisons with Cassini data , 2008 .