A Generalization of Probabilistic Uniform Spaces

We develop a theory for probabilistic semiuniform convergence spaces. Probabilistic semiuniform convergence spaces generalize probabilistic uniform spaces in the sense of Florescu and probabilistic convergence spaces in the sense of Kent and Richardson. This theory includes a new branch in topology, namely, Convenient Topology, introduced by Preuß. Thus, it includes semiuniform convergence spaces and uniform spaces, filter and Cauchy spaces and (symmetric) limit spaces and, therefore, (symmetric) topological spaces. The theory of probabilistic semiuniform convergence spaces reveals categories which are strong topological universes or have other convenient properties.

[1]  Gerhard Preuss,et al.  Theory of topological structures , 1987 .

[2]  Liviu C. Florescu,et al.  Probabilistic convergence structures , 1989 .

[3]  D. Kent,et al.  COMPLETIONS OF PROBABILISTIC CAUCHY SPACES , 1998 .

[4]  Gerhard Preub,et al.  SEMIUNIFORM CONVERGENCE SPACES , 1995 .

[5]  F. Schwarz HEREDITARY TOPOLOGICAL CATEGORIES AND TOPOLOGICAL UNIVERSES , 1986 .

[6]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[7]  M. J. Frank,et al.  Probabilistic topological spaces , 1971 .

[8]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. H. Keller,et al.  Die Limes-Uniformisierbarkeit der Limesräume , 1968 .

[10]  D. C. Kent,et al.  Probabilistic convergence spaces , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[11]  C. H. Cook,et al.  Uniform convergence structures , 1967 .