On the cost of optimal alphabetic code trees with unequal letter costs

[1]  Dieter Rautenbach,et al.  The delay of circuits whose inputs have specified arrival times , 2007, Discret. Appl. Math..

[2]  Dieter Rautenbach,et al.  Delay optimization of linear depth boolean circuits with prescribed input arrival times , 2006, J. Discrete Algorithms.

[3]  Hsien-Kuei Hwang,et al.  An asymptotic theory for recurrence relations based on minimization and maximization , 2003, Theor. Comput. Sci..

[4]  Jr. Hall Combinatorial theory (2nd ed.) , 1998 .

[5]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[6]  J. Abrahams Code and parse trees for lossless source encoding , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[7]  Edward M. Reingold,et al.  Optimum lopsided binary trees , 1989, JACM.

[8]  E. Reingold,et al.  Recurrence relations based on minimization and maximization , 1985 .

[9]  T. C. Hu,et al.  BINARY TREES OPTIMUM UNDER VARIOUS CRITERIA , 1979 .

[10]  S. Murakami A DICHOTOMOUS SEARCH WITH TRAVEL COST , 1976 .

[11]  Alon Itai,et al.  Optimal Alphabetic Trees , 1976, SIAM J. Comput..

[12]  D. Knuth,et al.  Recurrence relations based on minimization , 1974 .

[13]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[14]  Julia Abrahams,et al.  Code and parse tree for lossless source encoding , 2001, Commun. Inf. Syst..

[15]  K. Hlnderer On dichotomous search with direction-dependent costs for a uniformly hidden object , 1990 .

[16]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .