Correction of Non–Common-Path Error for Extreme Adaptive Optics

The future direct imaging of exoplanets depends critically on wave-front corrections. Extreme adaptive optics is being proposed to meet such a critical requirement. One limitation to the performance of adaptive optics is the differential wave-front aberration that is not measured by a conventional wave-front sensor because of the so-called non–common-path error. In this article, we propose a simple approach that can be used to eliminate differential aberration with extreme adaptive optics and is optimized for best image performance or directly optimized for high-contrast coronagraphic imaging. The approach that we propose can correct differential aberration in a single step, which guarantees high accuracy and allows adaptive optics to correct the differential aberration on a real-time scale. This approach is based on an iterative optimization algorithm that commands the deformable mirror directly and uses the focal-plane point-spread function as a metric function to evaluate the correction performance.

[1]  Thierry Fusco,et al.  Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Randall D. Bartos,et al.  The Gemini Planet Imager calibration wavefront sensor instrument , 2010, Astronomical Telescopes + Instrumentation.

[3]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  W. Traub,et al.  A laboratory demonstration of the capability to image an Earth-like extrasolar planet , 2007, Nature.

[5]  Haimin Wang,et al.  A portable solar adaptive optics system , 2009, Optical Engineering + Applications.

[6]  Richard Dekany,et al.  PALM-3000: visible light AO on the 5.1-meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[7]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[8]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[9]  Bing Dong,et al.  A portable solar adaptive optics system: software and laboratory developments , 2010, Astronomical Telescopes + Instrumentation.

[10]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[11]  L. Mugnier,et al.  Calibration of NAOS and CONICA static aberrations: Experimental results , 2003 .

[12]  Brian J. Bauman,et al.  The extreme adaptive optics testbed at UCSC: current results and coronagraphic upgrade , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  M A Vorontsov,et al.  Adaptive phase-distortion correction based on parallel gradient-descent optimization. , 1997, Optics letters.

[14]  R. Belikov,et al.  Closed loop, DM diversity-based, wavefront correction algorithm for high contrast imaging systems. , 2007, Optics express.

[15]  David Le Mignant,et al.  Performance of the Keck Observatory adaptive-optics system. , 2004, Applied optics.

[16]  R. Galicher,et al.  Focal plane wavefront sensor sensitivity for ELT planet finder , 2010, Astronomical Telescopes + Instrumentation.

[17]  Mikhail A. Vorontsov,et al.  Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction , 1998 .

[18]  R. Soummer,et al.  Sensing Phase Aberrations behind Lyot Coronagraphs , 2008 .

[19]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[20]  L. Mugnier,et al.  Calibration of NAOS and CONICA static aberrations - Application of the phase diversity technique , 2003 .

[21]  T. Fusco,et al.  Design of the extreme AO system for SPHERE, the planet finder instrument of the VLT , 2006, SPIE Astronomical Telescopes + Instrumentation.