Product Models for Frequency Tables Involving Indirect Observation

[1]  S. Fienberg,et al.  Two-Dimensional Contingency Tables with Both Completely and Partially Cross-Classified Data , 1974 .

[2]  S. Haberman Log-Linear Models for Frequency Tables Derived by Indirect Observation: Maximum Likelihood Equations , 1974 .

[3]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[4]  R. Sundberg Maximum likelihood theory and applications for distributions generated when observing a function of an exponential family variable , 1972 .

[5]  R. C. Elandt-Johnson Probability models and statistical methods in genetics , 1972 .

[6]  S. Fienberg,et al.  Some models for individual-group comparisons and group behavior , 1971 .

[7]  J. E. Cohen Estimation and interaction in a censored 2x2x2 contingency table. , 1971, Biometrics.

[8]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[9]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[10]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[11]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[12]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[13]  C. A. Smith,et al.  THE ESTIMATION OF GENE FREQUENCIES IN A RANDOM‐MATING POPULATION , 1955, Annals of human genetics.

[14]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .