Fabrication and Catalytic Properties of Co−Ag−Pt Nanoparticle-Decorated Titania Nanotube Arrays
暂无分享,去创建一个
C. Grimes | Lixia Yang | Q. Cai | A. He
[1] Craig A. Grimes,et al. Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .
[2] C. Grimes,et al. Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .
[3] C. Grimes,et al. Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .
[4] Craig A. Grimes,et al. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .
[5] C. Grimes,et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .
[6] C. Grimes,et al. An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .
[7] Craig A Grimes,et al. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.
[8] N. Ming,et al. Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts , 2006 .
[9] Craig A. Grimes,et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .
[10] C. Grimes,et al. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays , 2005 .
[11] Chun-yan Liu,et al. Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions. , 2005, Inorganic chemistry.
[12] Aicheng Chen,et al. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[13] P. Praserthdam,et al. Impact of Ti3+ Present in Titania on Characteristics and Catalytic Properties of the Co/TiO2 Catalyst , 2005 .
[14] Chun-yan Liu,et al. Depositional characteristics of metal coating on single-crystal TiO2 nanowires. , 2005, The journal of physical chemistry. B.
[15] Craig A. Grimes,et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .
[16] Craig A. Grimes,et al. Photoelectrochemical properties of titania nanotubes , 2004 .
[17] C. Grimes,et al. A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.
[18] Jih-Jen Wu,et al. Aligned TiO2 Nanorods and Nanowalls , 2004 .
[19] Craig A. Grimes,et al. A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .
[20] Craig A. Grimes,et al. Fabrication of tapered, conical-shaped titania nanotubes , 2003 .
[21] Craig A. Grimes,et al. Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors , 2003 .
[22] Craig A Grimes,et al. Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.
[23] K. Wada,et al. Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process. , 2003, The journal of physical chemistry. B.
[24] Craig A. Grimes,et al. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .
[25] Patrik Schmuki,et al. Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .
[26] P. Falaras,et al. Synthesis of Porous Nanocrystalline TiO2 Foam , 2003 .
[27] Craig A. Grimes,et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .
[28] N. Coville,et al. Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction , 2002 .
[29] Dongsheng Xu,et al. ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .
[30] S. Shinkai,et al. Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .
[31] Jing Sun,et al. Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals , 2002 .
[32] N. Coville,et al. Effect of boron source on the catalyst reducibility and Fischer–Tropsch synthesis activity of Co/TiO2 catalysts , 2002 .
[33] A. Vorontsov,et al. Morphological structure and physicochemical properties of nanotube TiO2 , 2000 .
[34] Tohru Sekino,et al. Titania Nanotubes Prepared by Chemical Processing , 1999 .
[35] Jinlin Li,et al. The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer–Tropsch catalysts , 1999 .
[36] T. Kunitake,et al. A Surface Sol−Gel Process of TiO2 and Other Metal Oxide Films with Molecular Precision , 1997 .