Fabrication and Catalytic Properties of Co−Ag−Pt Nanoparticle-Decorated Titania Nanotube Arrays

Highly ordered titania nanotube arrays are fabricated by anodic oxidation of titanium in a fluoride-ion-containing electrolyte. In this work Co−Ag−Pt nanoparticles, approximately 20 nm in diameter, are electrochemically deposited inside the nanotubes and the catalytic properties of the resultant architecture examined using Mn2+/Mn3+ as the probe. The effect of Co, Ag, and Pt loading content on the catalytic activity is investigated. In comparison to a Pt electrode, the oxidation potential of the Co−Ag−Pt/titania nanotube array electrode is negatively shifted by 93 mV and the peak current increased by a factor of 9.

[1]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[2]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[3]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[4]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[5]  C. Grimes,et al.  Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells , 2006 .

[6]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[7]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[8]  N. Ming,et al.  Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts , 2006 .

[9]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[10]  C. Grimes,et al.  A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays , 2005 .

[11]  Chun-yan Liu,et al.  Bamboo-shaped Ag-doped TiO2 nanowires with heterojunctions. , 2005, Inorganic chemistry.

[12]  Aicheng Chen,et al.  Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[13]  P. Praserthdam,et al.  Impact of Ti3+ Present in Titania on Characteristics and Catalytic Properties of the Co/TiO2 Catalyst , 2005 .

[14]  Chun-yan Liu,et al.  Depositional characteristics of metal coating on single-crystal TiO2 nanowires. , 2005, The journal of physical chemistry. B.

[15]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[16]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[17]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[18]  Jih-Jen Wu,et al.  Aligned TiO2 Nanorods and Nanowalls , 2004 .

[19]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[20]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[21]  Craig A. Grimes,et al.  Ammonia detection using nanoporous alumina resistive and surface acoustic wave sensors , 2003 .

[22]  Craig A Grimes,et al.  Metal oxide nanoarchitectures for environmental sensing. , 2003, Journal of nanoscience and nanotechnology.

[23]  K. Wada,et al.  Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process. , 2003, The journal of physical chemistry. B.

[24]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[25]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[26]  P. Falaras,et al.  Synthesis of Porous Nanocrystalline TiO2 Foam , 2003 .

[27]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[28]  N. Coville,et al.  Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction , 2002 .

[29]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[30]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[31]  Jing Sun,et al.  Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals , 2002 .

[32]  N. Coville,et al.  Effect of boron source on the catalyst reducibility and Fischer–Tropsch synthesis activity of Co/TiO2 catalysts , 2002 .

[33]  A. Vorontsov,et al.  Morphological structure and physicochemical properties of nanotube TiO2 , 2000 .

[34]  Tohru Sekino,et al.  Titania Nanotubes Prepared by Chemical Processing , 1999 .

[35]  Jinlin Li,et al.  The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer–Tropsch catalysts , 1999 .

[36]  T. Kunitake,et al.  A Surface Sol−Gel Process of TiO2 and Other Metal Oxide Films with Molecular Precision , 1997 .