Ultrasonic Phosphate Bonding of Nanoparticles

Low intensity ultrasound-induced radicals interact with surface adsorbed orthophosphate to bond nanoparticles with high mechanical strength and surface area. Dissimilar materials could be bonded to form robust metallic, ceramic, and organic composite microparticles. 3D nanostructures of a hydrated and amorphous electrocatalyst with carbon nanotubes were also constructed which exceeded the resistance-limited efficiency of 2D electrodes.

[1]  Ling Zhu,et al.  Ultrasonic-assisted synthesis of core–shell structure CePO4:Tb/GdPO4 and GdPO4/CePO4:Tb nanophosphors and their photoluminescence properties , 2013 .

[2]  M. Fontecave,et al.  A Janus cobalt-based catalytic material for electro-splitting of water. , 2012, Nature materials.

[3]  Jörg J Schneider,et al.  Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. , 2012, Chemical Society reviews.

[4]  P. Stroeve,et al.  Toxicity of nanomaterials. , 2012, Chemical Society reviews.

[5]  M. McCall,et al.  Environmental, health and safety issues: Nanoparticles in the real world. , 2011, Nature nanotechnology.

[6]  H. Möhwald,et al.  Ultrasonic Cavitation at Solid Surfaces , 2011, Advanced materials.

[7]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[8]  K. Suslick,et al.  Applications of Ultrasound to the Synthesis of Nanostructured Materials , 2010, Advanced materials.

[9]  Wei Zhang,et al.  Ultrasound-Assisted Fusion of Preformed Gold Nanoparticles , 2010 .

[10]  J. Simons,et al.  Nature of PO bonds in phosphates. , 2009, The journal of physical chemistry. A.

[11]  Fathi Zereini,et al.  Airborne particulate matter, platinum group elements and human health: a review of recent evidence. , 2009, The Science of the total environment.

[12]  D. Nocera,et al.  Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. , 2009, Journal of the American Chemical Society.

[13]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[14]  T. Valdés-Solís,et al.  High-surface area inorganic compounds prepared by nanocasting techniques , 2006 .

[15]  P. Krtil,et al.  Particle size dependence of oxygen evolution reaction on nanocrystalline RuO2 and Ru0.8Co0.2O2-x , 2006 .

[16]  T. Kulakovskaya,et al.  The Biochemistry of Inorganic Polyphosphates: Kulaev/The Biochemistry of Inorganic Polyphosphates , 2005 .

[17]  M. Ashokkumar,et al.  Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. , 2005, Ultrasonics sonochemistry.

[18]  A. Sanchez-Herencia,et al.  Surface behavior of nickel powders in aqueous suspensions. , 2005, The journal of physical chemistry. B.

[19]  K. Suslick,et al.  High velocity interparticle collisions driven by ultrasound. , 2004, Journal of the American Chemical Society.

[20]  A. Yaroslavtsev,et al.  Solid state reactions of alkali metal chlorides with acid tantalum phosphate, acid zirconium phosphate and vanadium oxyphosphate , 2003 .

[21]  Hideto Mitome,et al.  A standard method to calibrate sonochemical efficiency of an individual reaction system. , 2003, Ultrasonics sonochemistry.

[22]  C. Sotiriou-Leventis,et al.  Nanoengineering Strong Silica Aerogels , 2002 .

[23]  F. Stott,et al.  Erosion of alumina and silicon carbide at low-impact velocities , 2002 .

[24]  N. Bourne On the collapse of cavities , 2002 .

[25]  A. Gedanken,et al.  Sonochemical Synthesis of Mesoporous Titanium Oxide with Wormhole-like Framework Structures , 2000 .

[26]  A. Fujishima,et al.  Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces , 1998 .

[27]  T. Nakayama,et al.  SOL-GEL TRANSITION OF REVERSIBLE CLUSTER-CLUSTER AGGREGATIONS , 1998 .

[28]  A. Gedanken,et al.  Ultrasound driven aggregation and surface silanol modification in amorphous silica microspheres , 1997 .

[29]  S. Maruyama,et al.  Agglomeration of silica spheres under ultrasonication , 1997 .

[30]  G. Scherer,et al.  Cavitation during drying of a gel , 1995 .

[31]  T. Woignier,et al.  Plastic behaviour of aerogels under isostatic pressure , 1995 .

[32]  K. Suslick,et al.  Applications of Ultrasound to Materials Chemistry , 1995 .

[33]  E. Lima,et al.  Thermoreversible Gel Formation from Aqueous Aluminum Polyphosphate Solutions , 1994 .

[34]  K. Pritzker,et al.  Alkaline phosphatase dissolves calcium pyrophosphate dihydrate crystals. , 1991, The Journal of rheumatology.

[35]  K. Suslick,et al.  Interparticle collisions driven by ultrasound. , 1990, Science.

[36]  M. E. Gulden,et al.  Impact damage in brittle materials in the elastic-plastic response régime , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[37]  J. Bobick,et al.  Hydroxylapatite synthesis and characterization in dense polycrystalline form , 1976 .

[38]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[39]  R Roots,et al.  Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks of killing of mammalian cells. , 1975, Radiation research.

[40]  E. Hayon,et al.  Flash photolysis in the vacuum ultraviolet region of the phosphate anions H2PO4-, HPO42-, and P2O74- in aqueous solutions , 1968 .

[41]  R. Barrnett,et al.  Fine Structural Demonstration of Phosphatase Activity at pH 9 , 1965, Nature.

[42]  Matthew W. Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[43]  Kelly E. Parmenter,et al.  Mechanical properties of silica aerogels , 1998 .