Seeing Within: Molecular Imaging of the Cardiovascular System

Abstract— Molecular imaging is a rapidly evolving discipline with the goal of developing tools to display and quantify molecular and cellular targets in vivo. The heart of this field is based on the rational design and screening of targeted and activatable imaging reporter agents to sense fundamental processes of biology. Parallel advances in small animal imaging systems and in agent synthesis have allowed molecular imaging applications to extend into the in vivo arena. These advances have permitted, for example, in vivo sensing of inflammation, apoptosis, cell trafficking, and gene expression. In this review, we first review core principles of molecular imaging with an emphasis on smart, activatable agent technology. We then discuss applications of state-of-the-art molecular probes to interrogate important aspects of cardiovascular biology, with a focus on atherosclerosis, thrombosis, and heart failure. In the ensuing years, we anticipate that fundamental aspects of cardiovascular biology will be detectable in vivo, and that promising molecular imaging agents will be translated into the clinical arena to guide diagnosis and therapy of human cardiovascular illness.

[1]  I. Palacios,et al.  Indium 111-monoclonal antimyosin antibody imaging in the diagnosis of acute myocarditis. , 1987, Circulation.

[2]  Ralph Weissleder,et al.  Novel Factor XIII Probes for Blood Coagulation Imaging , 2003, Chembiochem : a European journal of chemical biology.

[3]  M. Gawaz,et al.  A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation , 2002, The Journal of experimental medicine.

[4]  Vasilis Ntziachristos,et al.  Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. , 2003, Neoplasia.

[5]  J. Urbain Oncogenes, cancer and imaging. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  Z. Galis,et al.  This Review Is Part of a Thematic Series on Matrix Metalloproteinases, Which Includes the following Articles: Matrix Metalloproteinase Inhibition after Myocardial Infarction: a New Approach to Prevent Heart Failure? Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: the Good, the Ba , 2022 .

[7]  M. Entman,et al.  Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. , 2001, The Journal of clinical investigation.

[8]  P. Libby,et al.  Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. , 1994, The Journal of clinical investigation.

[9]  R. Weissleder,et al.  MRI of transgene expression: correlation to therapeutic gene expression. , 2002, Neoplasia.

[10]  S. Gambhir Molecular imaging of cancer with positron emission tomography , 2002, Nature Reviews Cancer.

[11]  Ralph Weissleder,et al.  In vivo molecular target assessment of matrix metalloproteinase inhibition , 2001, Nature Medicine.

[12]  P. Doevendans,et al.  Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart , 2001, Nature Medicine.

[13]  Woo Kyung Moon,et al.  Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. , 2003, Bioconjugate chemistry.

[14]  Sanjiv S Gambhir,et al.  Positron-Emission Tomography Reporter Gene Expression Imaging in Rat Myocardium , 2003, Circulation.

[15]  Simon C Watkins,et al.  Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. , 1998, Circulation.

[16]  R Weissleder,et al.  MR imaging and scintigraphy of gene expression through melanin induction. , 1997, Radiology.

[17]  S. Weiss,et al.  Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Shapiro,et al.  Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. , 2000, The Journal of clinical investigation.

[19]  Dario Neri,et al.  Targeting by affinity–matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform , 1997, Nature Biotechnology.

[20]  Elliot R. McVeigh,et al.  Serial Cardiac Magnetic Resonance Imaging of Injected Mesenchymal Stem Cells , 2003, Circulation.

[21]  Christopher K. Glass,et al.  Atherosclerosis The Road Ahead , 2001, Cell.

[22]  B Hamm,et al.  Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles , 2001, Journal of magnetic resonance imaging : JMRI.

[23]  Federica Limana,et al.  Mobilized bone marrow cells repair the infarcted heart, improving function and survival , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Todaro,et al.  Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Zaverio M. Ruggeri,et al.  Platelets in atherothrombosis , 2002, Nature Medicine.

[26]  Ralph Weissleder,et al.  Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. , 2002, Bioconjugate chemistry.

[27]  P. Libby,et al.  Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. , 2000, The Journal of clinical investigation.

[28]  D. Taggart,et al.  Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. , 2003, The Annals of thoracic surgery.

[29]  S. Batra,et al.  99mTc-labeled divalent and tetravalent CC49 single-chain Fv's: novel imaging agents for rapid in vivo localization of human colon carcinoma. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[30]  Paul A Dayton,et al.  Targeted imaging using ultrasound , 2002, Journal of magnetic resonance imaging : JMRI.

[31]  P. Libby,et al.  Matrix metalloproteinases: not-so-innocent bystanders in heart failure. , 2000, The Journal of clinical investigation.

[32]  Ralph Weissleder,et al.  Magnetic sensors for protease assays. , 2003, Angewandte Chemie.

[33]  J. Ingwall,et al.  Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts , 2003, Nature Medicine.

[34]  R G Blasberg,et al.  Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Jain,et al.  Potential and limitations of radioimmunodetection and radioimmunotherapy with monoclonal antibodies. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  S. Homma,et al.  Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function , 2001, Nature Medicine.

[37]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[38]  A. Houng,et al.  Catalytic Life of Activated Factor XIII in Thrombi: Implications for Fibrinolytic Resistance and Thrombus Aging , 2000, Circulation.

[39]  S A Wickline,et al.  Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques , 2001, Circulation.

[40]  H. Gold,et al.  Acute myocardial infarct imaging with indium-111-labeled monoclonal antimyosin Fab. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[42]  Mary E. Dickinson,et al.  Technicolour transgenics: imaging tools for functional genomics in the mouse , 2003, Nature Reviews Genetics.

[43]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[44]  Alexander Petrovsky,et al.  Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. , 2002, Bioconjugate chemistry.

[45]  Peter Wernet,et al.  Repair of Infarcted Myocardium by Autologous Intracoronary Mononuclear Bone Marrow Cell Transplantation in Humans , 2002 .

[46]  S. Cherry,et al.  Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Taillefer,et al.  Imaging characteristics of a novel technetium Tc 99m-labeled platelet glycoprotein IIb/IIIa receptor antagonist in patients With acute deep vein thrombosis or a history of deep vein thrombosis. , 2003, Archives of internal medicine.

[48]  Ronald G Blasberg,et al.  Molecular-genetic imaging: current and future perspectives. , 2003, The Journal of clinical investigation.

[49]  D. Leake,et al.  Proteolytic degradation of low density lipoproteins by arterial smooth muscle cells: the role of individual cathepsins. , 1981, Biochimica et biophysica acta.

[50]  Masafumi Oshiro,et al.  Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter , 1997, Photochemistry and photobiology.

[51]  Vasilis Ntziachristos,et al.  Would near-infrared fluorescence signals propagate through large human organs for clinical studies? , 2002, Optics letters.

[52]  D. McPherson,et al.  In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. , 1999, Journal of the American College of Cardiology.

[53]  D. Piwnica-Worms,et al.  Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. , 2000, Bioconjugate chemistry.

[54]  R Weissleder,et al.  In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. , 2000, Cancer research.

[55]  Jonathan R. Lindner,et al.  Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to &agr;v&bgr;3 , 2003 .

[56]  Ralph Weissleder,et al.  Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. , 2001, Angewandte Chemie.

[57]  Bartley P. Griffith,et al.  Macrophage Accumulation Associated With Rat Cardiac Allograft Rejection Detected by Magnetic Resonance Imaging With Ultrasmall Superparamagnetic Iron Oxide Particles , 2001, Circulation.

[58]  R. Virmani,et al.  Apoptosis in myocytes in end-stage heart failure. , 1996, The New England journal of medicine.

[59]  R. Weissleder Scaling down imaging: molecular mapping of cancer in mice , 2002, Nature Reviews Cancer.

[60]  P. Doevendans,et al.  Visualisation of cell death in vivo in patients with acute myocardial infarction , 2000, The Lancet.

[61]  Ralph Weissleder,et al.  Peroxidase Substrate Nanosensors for MR Imaging , 2004 .

[62]  David M. Bodine,et al.  Bone marrow cells regenerate infarcted myocardium , 2001, Nature.

[63]  A. Bjørnerud,et al.  A targeted contrast agent for magnetic resonance imaging of thrombus: Implications of spatial resolution , 2001, Journal of magnetic resonance imaging : JMRI.

[64]  Ralph Weissleder,et al.  A Novel Near‐Infrared Fluorescence Sensor for Detection of Thrombin Activation in Blood , 2002, Chembiochem : a European journal of chemical biology.

[65]  R. Weissleder,et al.  In Vivo Imaging of HIV Protease Activity in Amplicon Vector-transduced Gliomas , 2004, Cancer Research.

[66]  Vasilis Ntziachristos,et al.  In Vivo Imaging of Proteolytic Activity in Atherosclerosis , 2002, Circulation.

[67]  Dai Fukumura,et al.  Dissecting tumour pathophysiology using intravital microscopy , 2002, Nature Reviews Cancer.

[68]  P. Kang,et al.  Apoptosis and heart failure: A critical review of the literature. , 2000, Circulation research.

[69]  Gerrity Rg The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. , 1981 .

[70]  J A Frank,et al.  Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[71]  C. Meares,et al.  Antibodies with infinite affinity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. G. Miller,et al.  In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. , 2000, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[73]  L. Knight Radiolabeled peptide ligands for imaging thrombi and emboli. , 2001, Nuclear medicine and biology.

[74]  B. Branchini Chemical synthesis of firefly luciferin analogs and inhibitors. , 2000, Methods in enzymology.

[75]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[76]  R. Weissleder,et al.  In Vivo Imaging of Thrombin Activity in Experimental Thrombi With Thrombin-Sensitive Near-Infrared Molecular Probe , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[77]  Gary D Luker,et al.  Molecular imaging of gene expression and protein function in vivo with PET and SPECT , 2002, Journal of magnetic resonance imaging : JMRI.

[78]  S. Achilefu,et al.  Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. , 2000, Investigative radiology.

[79]  B. Khaw The current role of infarct avid imaging. , 1999, Seminars in nuclear medicine.

[80]  R. Kitsis,et al.  A mechanistic role for cardiac myocyte apoptosis in heart failure. , 2003, The Journal of clinical investigation.

[81]  D A Benaron,et al.  Imaging transgenic animals. , 1999, Annual review of biomedical engineering.

[82]  C. Contag,et al.  It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology , 2002, Journal of magnetic resonance imaging : JMRI.

[83]  K. Weber,et al.  Myocardial matrix metalloproteinase(s): localization and activation , 1993, Molecular and Cellular Biochemistry.

[84]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[85]  J. D’Armiento,et al.  Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. , 2000, The Journal of clinical investigation.

[86]  A. Houng,et al.  The contribution of activated factor XIII to fibrinolytic resistance in experimental pulmonary embolism. , 1999, Circulation.

[87]  T J Dougherty,et al.  Fluorescence bronchoscopy for detection of lung cancer. , 1979, Chest.

[88]  S. Kaul,et al.  Noninvasive Imaging of Myocardial Reperfusion Injury Using Leukocyte-Targeted Contrast Echocardiography , 2002, Circulation.

[89]  H. Gold,et al.  Noninvasive detection of human cardiac transplant rejection with indium-111 antimyosin (Fab) imaging. , 1987, Circulation.

[90]  Scott E. Fraser,et al.  Tracking Transplanted Stem Cell Migration Using Bifunctional, Contrast Agent-Enhanced, Magnetic Resonance Imaging , 2002, NeuroImage.

[91]  A. Szalay,et al.  Imaging of light emission from the expression of luciferases in living cells and organisms: a review. , 2002, Luminescence : the journal of biological and chemical luminescence.

[92]  S. Schmitz,et al.  Iron-Oxide-Enhanced Magnetic Resonance Imaging of Atherosclerotic Plaques: Postmortem Analysis of Accuracy, Inter-Observer Agreement, and Pitfalls , 2002, Investigative Radiology.

[93]  F. Blankenberg,et al.  Annexin-V imaging for noninvasive detection of cardiac allograft rejection , 2001, Nature Medicine.

[94]  N. Pandian,et al.  Enhanced visualization of intravascular and left atrial appendage thrombus with the use of a thrombus-targeting ultrasonographic contrast agent (MRX-408A1): In vivo experimental echocardiographic studies. , 1999, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[95]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[96]  K. Ley,et al.  Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin , 2001, Circulation.

[97]  Jonathan R. Lindner,et al.  Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to &agr;v-Integrins , 2003, Circulation.

[98]  S. Schmitz,et al.  Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. , 2000, Investigative radiology.

[99]  R. Weissleder,et al.  In vivo imaging of tumors with protease-activated near-infrared fluorescent probes , 1999, Nature Biotechnology.

[100]  R S Balaban,et al.  Challenges in small animal noninvasive imaging. , 2001, ILAR journal.

[101]  Sanjiv S Gambhir,et al.  Optical Imaging of Cardiac Reporter Gene Expression in Living Rats , 2002, Circulation.

[102]  E. Topol,et al.  Prognostic value of myeloperoxidase in patients with chest pain. , 2003, The New England journal of medicine.

[103]  J. Weisel,et al.  Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. , 2002, Blood.

[104]  R Weissleder,et al.  Size optimization of synthetic graft copolymers for in vivo angiogenesis imaging. , 2001, Bioconjugate chemistry.

[105]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[106]  H. Strauss,et al.  Radiotracer characterization of coronary artery lesions. , 2002, Nuclear medicine communications.

[107]  David A. Cheresh,et al.  Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging , 1998, Nature Medicine.

[108]  Minutes,et al.  MOLECULAR IMAGING IN DRUG DISCOVERY AND DEVELOPMENT , 2003 .

[109]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[110]  M. Black,et al.  A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Kuriyan,et al.  Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. , 2002, Cancer research.

[112]  K Wienhard,et al.  Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas , 2001, The Lancet.

[113]  R. Weissleder,et al.  In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. , 2003, Cancer research.

[114]  Ralph Weissleder,et al.  Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI , 2002, Molecular imaging.

[115]  Robert E. Lenkinski,et al.  In vivo near-infrared fluorescence imaging of osteoblastic activity , 2001, Nature Biotechnology.

[116]  R G Blasberg,et al.  Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. , 1996, Cancer research.

[117]  M E Easterly,et al.  A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. , 2001, Lab animal.

[118]  J. Debatin,et al.  Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits , 2001, Circulation.

[119]  Thomas L. Chenevert,et al.  Noninvasive real-time imaging of apoptosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[120]  S. Kaul,et al.  Noninvasive Ultrasound Imaging of Inflammation Using Microbubbles Targeted to Activated Leukocytes , 2000, Circulation.

[121]  Ergin Atalar,et al.  In Vivo Magnetic Resonance Imaging of Mesenchymal Stem Cells in Myocardial Infarction , 2003, Circulation.

[122]  A. Luttun,et al.  Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure , 1999, Nature Medicine.

[123]  Ralph Weissleder,et al.  Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo , 2003, Oncogene.

[124]  Alexander Petrovsky,et al.  Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets , 2002, Molecular imaging.

[125]  F. Blankenberg,et al.  Nuclear medicine applications in molecular imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[126]  Andrew C. Li,et al.  The macrophage foam cell as a target for therapeutic intervention , 2002, Nature Medicine.

[127]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[128]  R. Visse,et al.  This Review Is Part of a Thematic Series on Matrix Metalloproteinases, Which Includes the following Articles: Matrix Metalloproteinase Inhibition after Myocardial Infarction: a New Approach to Prevent Heart Failure? Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: the Good, the Ba , 2022 .

[129]  Ming Zhao,et al.  Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent , 2001, Nature Medicine.

[130]  S. Gambhir,et al.  Molecular Imaging of Cardiac Cell Transplantation in Living Animals Using Optical Bioluminescence and Positron Emission Tomography , 2003, Circulation.

[131]  P. Libby Inflammation in atherosclerosis , 2002, Nature.

[132]  R. Gottlieb,et al.  Seeing death in the living , 2001, Nature Medicine.

[133]  S. Coughlin,et al.  Thrombin signalling and protease-activated receptors , 2000, Nature.

[134]  G. Soulez,et al.  Comparison of early and delayed scintigraphy with 99mTc-apcitide and correlation with contrast-enhanced venography in detection of acute deep vein thrombosis. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[135]  R. Weissleder,et al.  MAGNETIC NANOSENSORS FOR DNA ANALYSIS , 2002 .

[136]  S S Gambhir,et al.  Use of positron emission tomography in animal research. , 2001, ILAR journal.

[137]  L E Williams,et al.  Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. , 1996, Cancer research.

[138]  M. Cybulsky,et al.  A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. , 2001, The Journal of clinical investigation.

[139]  R. Weissleder,et al.  Near-infrared fluorescent imaging of tumor apoptosis. , 2003, Cancer research.

[140]  M. Iyer,et al.  Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[141]  F. Spinale,et al.  A Matrix Metalloproteinase Induction/Activation System Exists in the Human Left Ventricular Myocardium and Is Upregulated in Heart Failure , 2000, Circulation.

[142]  Ralph Weissleder,et al.  DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. , 2002, Journal of the American Chemical Society.

[143]  W. Semmler,et al.  Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands , 2001, Nature Biotechnology.

[144]  R. Gerrity The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. , 1981, The American journal of pathology.

[145]  M. Schwaiger,et al.  PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labelled, carbohydrated analogue of octreotide , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[146]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[147]  M. Naghavi,et al.  Superparamagnetic Iron Oxide–Based Method for Quantifying Recruitment of Monocytes to Mouse Atherosclerotic Lesions In Vivo: Enhancement by Tissue Necrosis Factor-&agr;, Interleukin-1&bgr;, and Interferon-&ggr; , 2003, Circulation.

[148]  Ralph Weissleder,et al.  Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. , 2003, Journal of the American Chemical Society.

[149]  V. Borutaite,et al.  Mitochondria in apoptosis of ischemic heart , 2003, FEBS letters.

[150]  Vasilis Ntziachristos,et al.  A submillimeter resolution fluorescence molecular imaging system for small animal imaging. , 2003, Medical physics.

[151]  Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI) , 2002 .

[152]  R. Weissleder,et al.  Fluorescence molecular tomography resolves protease activity in vivo , 2002, Nature Medicine.

[153]  J. G. Miller,et al.  A novel site-targeted ultrasonic contrast agent with broad biomedical application. , 1996, Circulation.