Singular Value Decomposition Approach To Edge Detection

The positions of edges along each row and column of an NxN image are found by computing the singular value decomposition of a matrix formed with the 2N point 1-D Fast Fourier transform of a symmetric signal corresponding to the row or column and locating the peaks in the inverse of the sum of the absolute values of the 2N point Fast Fourier transforms of the left singular vectors corresponding to the group of smallest singular values of this matrix. The computational complexity of the proposed procedure is essentially 0(1V2log(N)).

[1]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[4]  J. Modestino,et al.  Edge Detection in Noisy Images using Recursive Digital Filtering. , 1977 .

[5]  Fred M. Dickey,et al.  An Optimal Frequency Domain Filter for Edge Detection in Digital Pictures , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Kenneth S. Miller,et al.  Complex stochastic processes: an introduction to theory and application , 1974 .

[7]  Robert M. Haralick,et al.  Morphologic edge detection , 1987, IEEE J. Robotics Autom..

[8]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[9]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[10]  R. Haralick Edge and region analysis for digital image data , 1980 .

[11]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  M. Basseville,et al.  Edge detection using sequential methods for change in level--Part I: A sequential edge detection algorithm , 1981 .