Existence–uniqueness result for a nonlinear n-term fractional equation☆

Abstract We prove the existence–uniqueness of the solution to the nonlinear n-term time-fractional differential equation with constant coefficients in the Banach space C ( [ 0 , T ] ) , (1) b 0 D β 0 u ( t ) + ∑ i = 1 m − 1 b i D β i u ( t ) + ∑ i = m n − 1 b i D α i u ( t ) + b n D α n u ( t ) = f ( t , u ( t ) ) , t ∈ ( 0 , T ) , x ∈ R , u ( 0 ) = f ( 0 ) , u t ( 0 ) = g ( 0 ) , 0 β 1 β 2 ⋯ β m − 1 1 α m α m + 1 ⋯ α n 2 ( respectively 0 β 1 ⋯ β m − 1 α m α m + 1 ⋯ α n 1 , 1 β 1 ⋯ β m − 1 α m α m + 1 ⋯ α n 2 ) , f ( t , u ( t ) ) ∈ C ( [ 0 , T ) × C ( [ 0 , T ) ) ) is a given function meant to be composed with a real valued function u and satisfies Assumption 1.

[1]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[2]  J. Bona,et al.  On the Korteweg-de Vries-Kuramoto-Sivashinsky equation , 1996, Advances in Differential Equations.

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  J. Trujillo,et al.  Differential equations of fractional order:methods results and problem —I , 2001 .

[5]  Luigi Rodino,et al.  Existence and Uniqueness for a Nonlinear Fractional Differential Equation , 1996 .

[6]  Ahmed M. A. El-Sayed,et al.  Nonlinear functional differential equations of arbitrary orders , 1998 .

[7]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[8]  Shuqin Zhang,et al.  Existence of positive solution for some class of nonlinear fractional differential equations , 2003 .

[9]  J. Hale Theory of Functional Differential Equations , 1977 .

[10]  Varsha Daftardar-Gejji,et al.  Analysis of a system of fractional differential equations , 2004 .

[11]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[12]  J. Trujillo,et al.  Differential Equations of Fractional Order: Methods, Results and Problems. II , 2002 .

[13]  Varsha Daftardar-Gejji,et al.  Existence of positive solutions of nonlinear fractional differential equations , 2003 .

[14]  Gianni De Fabritiis,et al.  Discrete random walk models for symmetric Lévy–Feller diffusion processes , 1999 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  Francesco Mainardi,et al.  Sub-diffusion equations of fractional order and their fundamental solutions , 2007 .

[17]  Hari M. Srivastava,et al.  Operators of fractional integration and their applications , 2001, Appl. Math. Comput..

[18]  R. Gorenflo,et al.  FRACTIONAL RELAXATION OF DISTRIBUTED ORDER , 2006 .

[19]  M. M. Novak Complexus mundi: emergent patterns in nature , 2006 .

[20]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[21]  Guozhu Gao,et al.  On the solution of nonlinear fractional order differential equation , 2005 .

[22]  Igor Podlubny,et al.  The Laplace Transform Method for Linear Differential Equations of the Fractional Order , 1997, funct-an/9710005.

[23]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[24]  Francesco Mainardi,et al.  Continuous-time random walk and parametric subordination in fractional diffusion , 2007 .

[25]  Stanly Steinberg,et al.  Random walk models associated with distributed fractional order differential equations , 2006 .

[26]  M. Dozzi,et al.  On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension , 2005 .

[27]  Rudolf Gorenflo,et al.  Cauchy and Nonlocal Multi-Point Problems for Distributed Order Pseudo-Differential Equations, Part One , 2005 .

[28]  Guozhu Gao,et al.  Existence of fractional differential equations , 2005 .

[29]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[30]  Shuqin Zhang,et al.  The Existence of a Positive Solution for a Nonlinear Fractional Differential Equation , 2000 .

[31]  S. Pilipovic,et al.  Fractional differential equations through Laguerre expansions in abstract spaces: error estimates , 2006 .

[32]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .