Spectral mesh deformation

In this paper, we present a novel spectral method for mesh deformation based on manifold harmonics transform. The eigenfunctions of the Laplace–Beltrami operator give orthogonal bases for parameterizing the space of functions defined on the surfaces. The geometry and motion of the original irregular meshes can be compactly encoded using the low-frequency spectrum of the manifold harmonics. Using the spectral method, the size of the linear deformation system can be significantly reduced to achieve interactive computational speed for manipulating large triangle meshes. Our experimental results demonstrate that only a small spectrum is needed to achieve undistinguishable deformations for large triangle meshes. The spectral mesh deformation approach shows great performance improvement on computational speed over its spatial counterparts.

[1]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[2]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[3]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[4]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[5]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[6]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[7]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[8]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[9]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[10]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[11]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[12]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[13]  Rémi Ronfard,et al.  Detail-preserving variational surface design with multiresolution constraints , 2004, Proceedings Shape Modeling Applications, 2004..

[14]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[15]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[16]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[17]  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH 2005.

[18]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[19]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[20]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[21]  Markus Gross,et al.  Deformation Transfer for Detail-Preserving Surface Editing , 2006 .

[22]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[24]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[25]  Hao Zhang,et al.  Spectral Methods for Mesh Processing and Analysis , 2007, Eurographics.

[26]  Leif Kobbelt,et al.  GPU-Based Multiresolution Deformation using Approximate Normal Field Reconstruction , 2007, J. Graph. Tools.

[27]  Kun Zhou,et al.  Direct manipulation of subdivision surfaces on GPUs , 2007, SIGGRAPH 2007.

[28]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[29]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.