Detecting Variability in Massive Astronomical Time-Series Data I: application of an infinite Gaussian mixture model
暂无分享,去创建一个
Min-Su Shin | Yonsei University | Michael Sekora | Yong-Ik Byun Princeton University | M. Sekora | Y. University | M. Shin | Yong-Ik Byun Princeton University
[1] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[2] C. Beichman,et al. Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .
[3] Constantine Kotropoulos,et al. Gaussian Mixture Modeling by Exploiting the Mahalanobis Distance , 2008, IEEE Transactions on Signal Processing.
[4] Michael I. Jordan,et al. Variational methods for the Dirichlet process , 2004, ICML.
[5] Peter Kopacek,et al. Advances in Robotics , 2005, EUROCAST.
[6] Min-Su Shin,et al. EFFICIENT PERIOD SEARCH FOR TIME SERIES PHOTOMETRY , 2004 .
[7] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[8] Brandon C. Kelly,et al. Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey , 2004 .
[9] N. Wyn Evans,et al. Light-curve classification in massive variability surveys — I. Microlensing , 2002, astro-ph/0211121.
[10] V. Belokurov,et al. Light-curve classification in massive variability surveys - II. Transients towards the Large Magellanic Cloud , 2004, astro-ph/0404232.
[11] Peter B. Stetson,et al. ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .
[12] S. G. Djorgovski,et al. Automated probabilistic classification of transients and variables , 2008, 0802.3199.
[13] Yann Le Du,et al. Lightcurve Classification in Massive Variability Surveys , 2003 .
[14] P. J. Quinn,et al. The MACHO project LMC variable star inventory. 1: Beat Cepheids-conclusive evidence for the excitation of the second overtone in classical Cepheids , 1994 .
[15] A. Schwarzenberg-Czerny. Fast and Statistically Optimal Period Search in Uneven Sampled Observations , 1996 .
[16] Christopher R. Genovese,et al. Revealing components of the galaxy population through non-parametric techniques , 2008, 0809.2800.
[17] C. Aerts,et al. Astrophysics of Variable Stars , 2006 .
[18] J. D. Williams. Moments of the Ratio of the Mean Square Successive Difference to the Mean Square Difference in Samples From a Normal Universe , 1941 .
[19] K. E. McGowan,et al. Northern Sky Variability Survey: Public Data Release , 2004, astro-ph/0401217.
[20] E. Martin,et al. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring , 2006 .
[21] M. Templeton,et al. Secular Evolution in Mira Variable Pulsations , 2005, astro-ph/0504527.
[22] Michael J. Panik. Advanced Statistics from an Elementary Point of View , 2005 .
[23] Hee-Won Lee,et al. The Seventh Pacific Rim Conference on Stellar Astrophysics , 2007 .
[24] D. Kurtz. The Impact of Large‐Scale Surveys on Pulsating Star Research: IAU Colloquium 176 , 2000 .
[25] C. Koen. The Nyquist frequency for irregularly spaced time-series: a calculation formula , 2006 .
[26] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[27] 共立出版株式会社. コンピュータ・サイエンス : ACM computing surveys , 1978 .
[28] Robert A. Shaw,et al. Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .
[29] L. M. Sarro,et al. Automated supervised classification of variable stars - I. Methodology , 2007, 0711.0703.
[30] L. Eyer,et al. A study of supervised classification of Hipparcos variable stars using PCA and Support Vector Machines , 2007, 0712.2898.
[31] Bohdan Paczynski. Massive Variability Searches: The Past, Present and Future Massive Variability Searches , 2001 .
[32] Laurent Eyer,et al. Variable stars across the observational HR diagram , 2007, 0712.3797.
[33] Yee Whye Teh,et al. Dirichlet Processes: Tutorial and Practical Course , 2007 .
[34] J. Neumann. Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .
[35] Carla E. Brodley,et al. Feature Selection for Unsupervised Learning , 2004, J. Mach. Learn. Res..
[36] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[37] R. Maitra,et al. Supplement to “ A k-mean-directions Algorithm for Fast Clustering of Data on the Sphere ” published in the Journal of Computational and Graphical Statistics , 2009 .
[38] Variability-selected QSO candidates in OGLE-II Galactic bulge fields , 2004, astro-ph/0407302.
[39] Asis Kumar Chattopadhyay,et al. Statistical Evidence for Three Classes of Gamma-Ray Bursts , 2007, 0705.4020.
[40] Nick Kaiser,et al. Pan-STARRS: a wide-field optical survey telescope array , 2004, SPIE Astronomical Telescopes + Instrumentation.
[41] B. Peterson,et al. Application of cubic splines to the spectral analysis of unequally spaced data , 1994 .
[42] Christopher W. Stubbs,et al. The macho project LMC variable star inventory. V. Classification and orbits of 611 eclipsing binary stars , 1997 .
[43] Bohdan Paczynski. Monitoring All Sky for Variability , 2000 .
[44] Wojtek J. Krzanowski,et al. Principles of multivariate analysis : a user's perspective. oxford , 1988 .
[45] Purushottam W. Laud,et al. Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .
[46] H. Aumann,et al. Infrared Astronomical Satellite , 1977 .
[47] L. S. Nelson,et al. An Approximation for the Distribution of the von Neumann Ratio , 1981 .
[48] Christopher W. Stubbs,et al. The MACHO Project LMC Variable Star Inventory.II.LMC RR Lyrae Stars- Pulsational Characteristics and Indications of a Global Youth of the LMC , 1996 .
[49] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[50] Fernando A. Quintana,et al. Nonparametric Bayesian data analysis , 2004 .