Loops with exponent three in all isotopes
暂无分享,去创建一个
[1] E. G. Goodaire,et al. A Class of Loops Which are Isomorphic to all Loop Isotopes , 1982, Canadian Journal of Mathematics.
[2] M. Kinyon,et al. On Twisted Subgroups and Bol Loops of Odd Order , 2002, math/0208231.
[3] Ian M. Wanless,et al. New families of atomic Latin squares and perfect 1-factorisations , 2006, J. Comb. Theory A.
[4] Katherine Heinrich,et al. The maximum number of intercalates in a latin square , 1981 .
[5] R. H. Bruck. A Survey of Binary Systems , 1971 .
[6] Ian M. Wanless,et al. Overlapping latin subsquares and full products , 2010 .
[7] P. Cameron. On Groups with Two Triply Transitive Permutation Representations , 1972 .
[8] H. O. Pflugfelder. Quasigroups and loops : introduction , 1990 .
[9] Ian M. Wanless,et al. The cycle structure of two rows in a random Latin square , 2008, Random Struct. Algorithms.
[10] Ian M. Wanless. Perfect Factorisations of Bipartite Graphs and Latin Squares Without Proper Subrectangles , 1999, Electron. J. Comb..
[11] Peter J. Cameron,et al. Bounds on the number of small Latin subsquares , 2014, J. Comb. Theory, Ser. A.
[12] Ian M. Wanless,et al. Atomic Latin Squares of Order Eleven , 2004 .
[13] Padraic James Bartlett. Completions of ε-Dense Partial Latin Squares: COMPLETIONS OF ε-DENSE PARTIAL LATIN SQUARES , 2013 .
[14] J. Dénes,et al. Latin squares and their applications , 1974 .
[15] Ian M. Wanless. Atomic Latin Squares based on Cyclotomic Orthomorphisms , 2005, Electron. J. Comb..
[16] Ian M. Wanless,et al. Bounds on the number of autotopisms and subsquares of a Latin square , 2013, Comb..
[17] A. D. Keedwell. A search for projective planes of a special type with the aid of a digital computer , 1965 .
[18] Kenneth Kunen,et al. Power-associative, conjugacy closed loops , 2005 .
[19] Uniquely 2-divisible Bol loops , 2009, 0910.2429.