Spintronics - A retrospective and perspective

Spintronics is a rapidly emerging field of science and technology that will most likely have a significant impact on the future of all aspects of electronics as we continue to move into the 21st century. Conventional electronics are based on the charge of the electron. Attempts to use the other fundamental property of an electron, its spin, have given rise to a new, rapidly evolving field, known as spintronics, an acronym for spin transport electronics that was first introduced in 1996 to designate a program of the U.S. Defense Advanced Research Projects Agency (DARPA). Initially, the spintronics program involved overseeing the development of advanced magnetic memory and sensors based on spin transport electronics. It was then expanded to included Spins IN Semiconductors (SPINS), in the hope of developing a new paradigm in semiconductor electronics based on the spin degree of freedom of the electron. Studies of spin-polarized transport in bulk and low-dimensional semiconductor structures show promise for the creation of a hybrid device that would combine magnetic storage with gain-in effect, a spin memory transistor. This paper reviews some of the major developments in this field and provides a perspective of what we think will be the future of this exciting field. It is not meant to be a comprehensive review of the whole field but reflects a bias on the part of the authors toward areas that they believe will lead to significant future technologies.

[1]  C. S. Comstock,et al.  Threshold properties of 1, 2 and 4 µm multilayer magneto-resistive memory cells , 1987 .

[2]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[3]  D. R. Krahn,et al.  The design of a one megabit non-volatile M-R memory chip using 1.5*5 mu m cells , 1988 .

[4]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[5]  Slonczewski Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989, Physical review. B, Condensed matter.

[6]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[7]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[8]  Parkin,et al.  Oscillatory magnetic exchange coupling through thin copper layers. , 1991, Physical review letters.

[9]  Gurney,et al.  Giant magnetoresistive in soft ferromagnetic multilayers. , 1991, Physical review. B, Condensed matter.

[10]  Parkin,et al.  Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. , 1991, Physical review letters.

[11]  S. Parkin,et al.  Giant magnetoresistance in antiferromagnetic Co/Cu multilayers , 1991 .

[12]  Parkin,et al.  Origin of enhanced magnetoresistance of magnetic multilayers: Spin-dependent scattering from magnetic interface states. , 1993, Physical review letters.

[13]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[14]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[15]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[16]  H. Ohno,et al.  Transport properties and origin of ferromagnetism in (Ga,Mn)As , 1998 .

[17]  D. Awschalom,et al.  Resonant Spin Amplification in n-Type GaAs , 1998 .

[18]  R. Fiederling,et al.  Injection and detection of a spin-polarized current in a light-emitting diode , 1999, Nature.

[19]  D. K. Young,et al.  Electrical spin injection in a ferromagnetic semiconductor heterostructure , 1999, Nature.

[20]  S. Wolf,et al.  Spintronics: a new paradigm for electronics for the new millennium , 2000 .

[21]  B. R. Bennett,et al.  Robust electrical spin injection into a semiconductor heterostructure , 2000 .

[22]  H. Ohno,et al.  Magnetotransport properties of (Ga, Mn)Sb , 2000 .

[23]  R. Scheuerlein,et al.  A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and FET switch in each cell , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[24]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[25]  Alan F. Murray,et al.  IEEE International Solid-State Circuits Conference , 2001 .

[26]  M. J. Reed,et al.  Room temperature ferromagnetic properties of (Ga, Mn)N , 2001 .

[27]  R. Stroud,et al.  Reduction Of Spin Injection Efficiency by Interface Spin Scattering , 2001, cond-mat/0110570.

[28]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[29]  Sunglae Cho,et al.  Room-temperature ferromagnetism in (Zn1-xMnx)GeP2 semiconductors. , 2002, Physical review letters.

[30]  E. Gansen,et al.  Femtosecond all-optical polarization switching based on the virtual excitation of spin-polarized excitons in quantum wells , 2002 .

[31]  The State University of New York,et al.  Above-room-temperature ferromagnetism in GaSb/Mn digital alloys , 2002, cond-mat/0203361.

[32]  J. Slaughter,et al.  A low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[33]  S. Parkin,et al.  Room temperature operation of a high output current magnetic tunnel transistor , 2002 .

[34]  Parmanand Sharma,et al.  Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO , 2003, Nature materials.

[35]  Jon M. Slaughter,et al.  Magnetoresistive random access memory using magnetic tunnel junctions , 2003, Proc. IEEE.

[36]  T. Kreutz,et al.  Modification of ferromagnetism in semiconductors by molecular monolayers , 2003 .

[37]  S. Sarma,et al.  Co-doped La0.5Sr0.5TiO3−δ: Diluted magnetic oxide system with high Curie temperature , 2002, cond-mat/0209267.

[38]  S. Sarma,et al.  High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta). , 2003, Physical review letters.

[39]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[40]  X. Cartoixà,et al.  A resonant spin lifetime transistor , 2003 .

[41]  S. Wolf,et al.  Scanning the issue - Special issue on spintronics , 2003 .

[42]  S. Parkin,et al.  Giant magnetocurrent exceeding 3400% in magnetic tunnel transistors with spin-valve base layers , 2003 .

[43]  V. Zayets,et al.  Room-temperature ferromagnetism in a II-VI diluted magnetic semiconductor Zn(1-x)Cr(x)Te. , 2003, Physical review letters.

[44]  J. Daughton Spin-dependent sensors , 2003, Proc. IEEE.

[45]  D. Awschalom,et al.  Coherent Spin Transfer Between Molecularly Bridged Quantum Dots , 2003, Science.

[46]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[47]  R. Shelby,et al.  Optical detection of hot-electron spin injection into GaAs from a magnetic tunnel transistor source. , 2003, Physical review letters.

[48]  H. Hoenigschmid,et al.  A 16Mb MRAM featuring bootstrapped write drivers , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[49]  J. Philip,et al.  High-temperature ferromagnetism in manganese-doped indium–tin oxide films , 2004 .

[50]  W. Rippard,et al.  Direct-current induced dynamics in Co90 Fe10/Ni80 Fe20 point contacts. , 2003, Physical review letters.

[51]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[52]  E. Gansen,et al.  Ultrafast polarization modulation induced by the “virtual excitation” of spin-polarized excitons in quantum wells: Application to all-optical switching , 2004 .

[53]  David J. Smith,et al.  Observation of ferromagnetism above 900 K in Cr-GaN and Cr-AlN , 2004, cond-mat/0402103.

[54]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[55]  E. Gansen,et al.  χ(3) analysis of all-optical polarization switching in semiconductor quantum wells , 2004 .

[56]  A. Omair,et al.  A 4-Mb 0.18-/spl mu/m 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers , 2005, IEEE Journal of Solid-State Circuits.

[57]  R. W. Dave,et al.  A 4-Mb toggle MRAM based on a novel bit and switching method , 2005, IEEE Transactions on Magnetics.

[58]  S. Assefa,et al.  Recent advances in MRAM technology , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[59]  A. M. Nazmul,et al.  High temperature ferromagnetism in GaAs-based heterostructures with Mn delta doping. , 2005, Physical review letters.

[60]  William J. Gallagher,et al.  Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip , 2006, IBM J. Res. Dev..

[61]  J. Slaughter Recent Advances in MRAM Technology , 2007, 2007 65th Annual Device Research Conference.