Tug-of-war and the infinity Laplacian

We consider a class of zero-sum two-player stochastic games called tug-of-war and use them to prove that every bounded real-valued Lipschitz function F on a subset Y of a length space X admits a unique absolutely minimal (AM) extension to X, i.e., a unique Lipschitz extension u : X → ℝ for which Lip U u = Lip ∂u u for all open U ⊂ X \ Y.

[1]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[2]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[3]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[4]  Gunnar Aronsson,et al.  On the partial differential equationux2uxx+2uxuyuxy+uy2uyy=0 , 1968 .

[5]  G. Aronsson Construction of singular solutions to the p-harmonic equation and its limit equation for p=∞ , 1986 .

[6]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[7]  Purely Inseparable Extensions of Complete Intersections , 1993 .

[8]  J. Propp,et al.  Richman games , 1995, math/9502222.

[9]  Centro internazionale matematico estivo. Session,et al.  Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .

[10]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[11]  Richard J. Nowakowski,et al.  Games of No Chance 3: Surveys , 1998 .

[12]  J. Propp,et al.  Combinatorial Games under Auction Play , 1999 .

[13]  Абсолютно минимальные продолжения функций на метрических пространствах@@@Absolutely minimal extensions of functions on metric spaces , 1999 .

[14]  V. A. Mil'man Absolutely minimal extensions of functions on metric spaces , 1999 .

[15]  G. Barles,et al.  EXISTENCE AND COMPARISON RESULTS FOR FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITHOUT ZEROTH-ORDER TERM* , 2001 .

[16]  L. Evans,et al.  Optimal Lipschitz extensions and the infinity laplacian , 2001 .

[17]  A remark on infinity harmonic functions. , 2001 .

[18]  Petri Juutinen,et al.  ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .

[19]  Sylvain Sorin,et al.  Stochastic Games and Applications , 2003 .

[20]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[21]  O. Savin C1 Regularity for Infinity Harmonic Functions in Two Dimensions , 2005 .

[22]  Adam M. Oberman A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions , 2004, Math. Comput..

[23]  L. Evans,et al.  Various Properties of Solutions of the Infinity-Laplacian Equation , 2005 .

[24]  Champion,et al.  Principles of comparison with distance functions for absolute minimizers , 2007 .

[25]  Yuval Peres,et al.  Random-Turn Hex and Other Selection Games , 2005, Am. Math. Mon..

[26]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .