Detecting periodicity from the trajectory of a random walk in random environment

Abstract For nearest neighbor univariate random walks in a periodic environment, where the probability of moving depends on a periodic function, we show how to estimate the period and the function. For random walks in non-periodic environments, we find that the asymptotic limit of the estimator is constant in the ballistic case, when the random walk is transient and the law of large numbers holds with a non zero limit. Numerical examples are given in the recurrent case, and the sub-ballistic case, where the random walk is transient but the law of large numbers yields a zero limit.

[1]  Shenyang Guo,et al.  Maximum Likelihood Estimator , 2013 .

[2]  Pierre Andreoletti,et al.  On the estimation of the potential of Sinai’s RWRE , 2011 .

[3]  Frederick Solomon Random Walks in a Random Environment , 1975 .

[4]  Mikael Falconnet,et al.  Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support , 2014, 1404.2551.

[5]  Omer Adelman,et al.  Random walks in random environment: What a single trajectory tells , 2003 .

[6]  Harry Kesten,et al.  A limit law for random walk in a random environment , 1975 .

[7]  Catherine Matias,et al.  Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment , 2012, 1210.6328.

[8]  S. Alili Asymptotic behaviour for random walks in random environments , 1999 .

[9]  S. Kozlov,et al.  The method of averaging and walks in inhomogeneous environments , 1985 .

[10]  K. R. Parthasarathy,et al.  On the category of ergodic measures , 1961 .

[11]  Matthieu Lerasle,et al.  Non parametric estimation for random walks in random environment , 2016, 1606.03848.

[12]  R. Pyke,et al.  On random walks and diffusions related to Parrondo's games , 2003 .

[13]  Catherine Matias,et al.  Hidden Markov model for parameter estimation of a random walk in a Markov environment , 2015 .

[14]  D. Loukianova,et al.  Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment , 2014, Mathematical Methods of Statistics.