The Pauli Principle Revisited

By the Pauli exclusion principle, no quantum state can be occupied by more than one electron. One can state this as a constraint on the one electron density matrix that bounds its eigenvalues by 1. Shortly after its discovery, the Pauli principle was replaced by anti-symmetry of the multi-electron wave function. In this paper we solve a longstanding problem about the impact of this replacement on the one electron density matrix, that goes far beyond the original Pauli principle. Our approach uses Berenstein and Sjamaar’s theorem on the restriction of an adjoint orbit onto a subgroup, and allows us to treat any type of permutational symmetry.

[1]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[2]  Arkady Berenstein,et al.  Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion , 1998 .

[3]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[4]  K. Dennis,et al.  The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .

[5]  William Fulton,et al.  Schubert varieties and degeneracy loci , 1998 .

[6]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[7]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[8]  M. Ruskai N‐Representability Problem: Particle‐Hole Equivalence , 1970 .

[9]  M. Ruskai Comment on the Peltzer-Brandstatter papers: Two counterexamples☆ , 1973 .

[10]  I. Gel'fand,et al.  SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P , 1973 .

[11]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[12]  Matthias Christandl,et al.  Quantum computational complexity of the N-representability problem: QMA complete. , 2007, Physical review letters.

[13]  Sufficient conditions for pure state N-representability , 1999 .

[14]  Studies in the theory of the generalized density operators V. The N-fermion representability problem for the second order generalized density operator , 1971 .

[15]  Mary Beth Ruskai,et al.  Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.

[16]  D. Mazziotti Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules , 2007 .

[17]  D. Mazziotti Comprar Advances in Chemical Physics, Volume 134, Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules | David A. Mazziotti | 9780471790563 | Wiley , 2007 .

[18]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[19]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[20]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[21]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[22]  M. V. Leeuwen,et al.  Lie : a package for Lie group computations , 1992 .

[23]  Alexander Klyachko Vector bundles, linear representations, and spectral problems , 2003 .

[24]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[25]  A. Klyachko Quantum marginal problem and N-representability , 2005, quant-ph/0511102.

[26]  A. Klyachko Dynamic symmetry approach to entanglement , 2008, 0802.4008.

[27]  M. Christandl,et al.  N-representability is QMA-complete , 2006 .

[28]  Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding centre motion , 1998, quant-ph/9805025.

[29]  A. J. Coleman,et al.  Reduced Density Matrices , 2000 .

[30]  E. Sudarshan,et al.  Pauli And The Spin-Statistics Theorem , 1998 .

[31]  Alain Lascoux,et al.  Symmetry and flag manifolds , 1983 .