Chemistry and Biology of Vision*

Visual perception in humans occurs through absorption of electromagnetic radiation from 400 to 780 nm by photoreceptors in the retina. A photon of visible light carries a sufficient amount of energy to cause, when absorbed, a cis,trans-geometric isomerization of the 11-cis-retinal chromophore, a vitamin A derivative bound to rhodopsin and cone opsins of retinal photoreceptors. The unique biochemistry of these complexes allows us to reliably and reproducibly collect continuous visual information about our environment. Moreover, other nonconventional retinal opsins such as the circadian rhythm regulator melanopsin also initiate light-activated signaling based on similar photochemistry.

[1]  K. Palczewski,et al.  Rhodopsin-transducin heteropentamer: three-dimensional structure and biochemical characterization. , 2011, Journal of structural biology.

[2]  K. Koch,et al.  A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision. , 2011, The Biochemical journal.

[3]  A. V. Cideciyan,et al.  Defective photoreceptor phagocytosis in a mouse model of enhanced S‐cone syndrome causes progressive retinal degeneration , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  F. Schmitz,et al.  In Situ Visualization of Protein Interactions in Sensory Neurons: Glutamic Acid-Rich Proteins (GARPs) Play Differential Roles for Photoreceptor Outer Segment Scaffolding , 2011, The Journal of Neuroscience.

[5]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[6]  T. Badea,et al.  Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs , 2011, Nature.

[7]  K. Palczewski,et al.  Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina* , 2011, The Journal of Biological Chemistry.

[8]  M. Davis,et al.  UNC119 is required for G protein trafficking in sensory neurons , 2011, Nature Neuroscience.

[9]  K. Palczewski,et al.  Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. , 2011, Progress in lipid research.

[10]  H. Hamm,et al.  Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit , 2011, Proceedings of the National Academy of Sciences.

[11]  G. Salgado,et al.  Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin , 2011, Proceedings of the National Academy of Sciences.

[12]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[13]  K. Palczewski,et al.  Retinyl Ester Storage Particles (Retinosomes) from the Retinal Pigmented Epithelium Resemble Lipid Droplets in Other Tissues* , 2011, The Journal of Biological Chemistry.

[14]  G. Salgado,et al.  Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation , 2011, Nature Structural &Molecular Biology.

[15]  Vladimir J. Kefalov,et al.  The Cone-specific visual cycle , 2011, Progress in Retinal and Eye Research.

[16]  A. J. Roman,et al.  Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦ , 2011, The Journal of Biological Chemistry.

[17]  Ivana Peluso,et al.  miRNeye: a microRNA expression atlas of the mouse eye , 2010, BMC Genomics.

[18]  K. Palczewski Blind dogs that can see: pharmacological treatment of Leber congenital amaurosis caused by a defective visual cycle. , 2010, Archives of ophthalmology.

[19]  K. Palczewski,et al.  Membrane-binding and enzymatic properties of RPE65 , 2010, Progress in Retinal and Eye Research.

[20]  K. Palczewski,et al.  Structural characterization of the rod cGMP phosphodiesterase 6. , 2010, Journal of molecular biology.

[21]  David R. Williams,et al.  Noninvasive multi–photon fluorescence microscopy resolves retinol and retinal–condensation products in mouse eyes , 2010, Nature Medicine.

[22]  K. Palczewski,et al.  The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision. , 2010, Trends in biochemical sciences.

[23]  Steven O. Smith Structure and activation of the visual pigment rhodopsin. , 2010, Annual review of biophysics.

[24]  M. Chance,et al.  Visualizing water molecules in transmembrane proteins using radiolytic labeling methods. , 2010, Biochemistry.

[25]  J. Sparrow,et al.  Phospholipid meets all-trans-retinal: the making of RPE bisretinoids , 2010, Journal of Lipid Research.

[26]  K. Palczewski,et al.  Phagocytosis of retinal rod and cone photoreceptors. , 2010, Physiology.

[27]  Jasenka Guduric-Fuchs,et al.  Prediction of microRNAs affecting mRNA expression during retinal development , 2010, BMC Developmental Biology.

[28]  A. Stocker,et al.  Bothnia dystrophy is caused by domino-like rearrangements in cellular retinaldehyde-binding protein mutant R234W , 2009, Proceedings of the National Academy of Sciences.

[29]  P. Scheerer,et al.  A G protein-coupled receptor at work: the rhodopsin model. , 2009, Trends in biochemical sciences.

[30]  M. Chance,et al.  Crystal structure of native RPE65, the retinoid isomerase of the visual cycle , 2009, Proceedings of the National Academy of Sciences.

[31]  K. Palczewski,et al.  Structure of cone photoreceptors , 2009, Progress in Retinal and Eye Research.

[32]  K. Palczewski,et al.  Involvement of All-trans-retinal in Acute Light-induced Retinopathy of Mice* , 2009, Journal of Biological Chemistry.

[33]  Krzysztof Palczewski,et al.  Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors , 2009, Proceedings of the National Academy of Sciences.

[34]  J. von Lintig,et al.  NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide , 2008, Proceedings of the National Academy of Sciences.

[35]  Patrick Scheerer,et al.  Crystal structure of the ligand-free G-protein-coupled receptor opsin , 2008, Nature.

[36]  K. Palczewski,et al.  Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation* , 2008, Journal of Biological Chemistry.

[37]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[38]  W. Hauswirth,et al.  Dicer Inactivation Leads to Progressive Functional and Structural Degeneration of the Mouse Retina , 2008, The Journal of Neuroscience.

[39]  A. Terakita,et al.  Expression and comparative characterization of Gq‐coupled invertebrate visual pigments and melanopsin , 2008, Journal of neurochemistry.

[40]  B. Venkatesh,et al.  TFCONES: A database of vertebrate transcription factor-encoding genes and their associated conserved noncoding elements , 2007, BMC Genomics.

[41]  K. Palczewski,et al.  Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. , 2007, Structure.

[42]  D. Valle,et al.  MicroRNA (miRNA) Transcriptome of Mouse Retina and Identification of a Sensory Organ-specific miRNA Cluster* , 2007, Journal of Biological Chemistry.

[43]  W. Baumeister,et al.  Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography , 2007, The Journal of cell biology.

[44]  S. Tsang,et al.  Transducin Translocation in Rods Is Triggered by Saturation of the GTPase-Activating Complex , 2007, The Journal of Neuroscience.

[45]  G. Gurzadyan,et al.  Photoionization versus photoheterolysis of all-trans-retinol. The effects of solvent and laser radiation intensity. , 2007, Physical chemistry chemical physics : PCCP.

[46]  K. Palczewski,et al.  Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. , 2007, Annual review of pharmacology and toxicology.

[47]  Krzysztof Palczewski,et al.  Crystal structure of a photoactivated deprotonated intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[48]  T. Okada,et al.  Local peptide movement in the photoreaction intermediate of rhodopsin , 2006, Proceedings of the National Academy of Sciences.

[49]  Krzysztof Palczewski,et al.  G protein-coupled receptor rhodopsin. , 2006, Annual review of biochemistry.

[50]  K. Palczewski,et al.  The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. , 2006, Journal of molecular biology.

[51]  K. Boon,et al.  Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE. , 2006, Investigative ophthalmology & visual science.

[52]  Krzysztof Palczewski,et al.  Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. , 2006, Current opinion in structural biology.

[53]  F. Rieke,et al.  Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis , 2005, PLoS medicine.

[54]  J. Corbo,et al.  A Hybrid Photoreceptor Expressing Both Rod and Cone Genes in a Mouse Model of Enhanced S-Cone Syndrome , 2005, PLoS genetics.

[55]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[56]  K. Palczewski,et al.  Related enzymes solve evolutionarily recurrent problems in the metabolism of carotenoids. , 2005, Trends in plant science.

[57]  A. Engel,et al.  Rhodopsin Signaling and Organization in Heterozygote Rhodopsin Knockout Mice* , 2004, Journal of Biological Chemistry.

[58]  Marcus Elstner,et al.  The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. , 2004, Journal of molecular biology.

[59]  R. V. Van Gelder,et al.  Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver* , 2004, Journal of Biological Chemistry.

[60]  Krzysztof Palczewski,et al.  Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye , 2004, The Journal of cell biology.

[61]  R. V. Van Gelder,et al.  Sleep disturbances in young subjects with visual dysfunction. , 2004, Ophthalmology.

[62]  K. Palczewski,et al.  G protein-coupled receptor rhodopsin: a prospectus. , 2003, Annual review of physiology.

[63]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  K. Palczewski,et al.  Phototransduction: crystal clear. , 2003, Trends in biochemical sciences.

[65]  A. Engel,et al.  Organization of the G Protein-coupled Receptors Rhodopsin and Opsin in Native Membranes* , 2003, Journal of Biological Chemistry.

[66]  A. Engel,et al.  Atomic-force microscopy: Rhodopsin dimers in native disc membranes , 2003, Nature.

[67]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[68]  R. Radu,et al.  Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas A Novel Pathway for Visual-Pigment Regeneration in Daylight , 2002, Neuron.

[69]  K. Morikawa,et al.  Three-dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. , 2002, Journal of structural biology.

[70]  P. Detwiler,et al.  Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis* , 2002, The Journal of Biological Chemistry.

[71]  Yoshinori Shichida,et al.  Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[73]  M. Resh,et al.  Heterogeneous Fatty Acylation of Src Family Kinases with Polyunsaturated Fatty Acids Regulates Raft Localization and Signal Transduction* , 2001, The Journal of Biological Chemistry.

[74]  K. Palczewski,et al.  Confronting Complexity: the Interlink of Phototransduction and Retinoid Metabolism in the Vertebrate Retina , 2001, Progress in Retinal and Eye Research.

[75]  Wei He,et al.  Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å , 2001, Nature.

[76]  K. Palczewski,et al.  Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. , 2000, Biochemistry.

[77]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[78]  A. Dizhoor,et al.  Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases* , 1999, The Journal of Biological Chemistry.

[79]  D. Bok,et al.  Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle , 1998, Nature Genetics.

[80]  R. Molday Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. , 1998, Investigative ophthalmology & visual science.

[81]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[82]  G. Büldt,et al.  X-ray crystal structure of arrestin from bovine rod outer segments , 1998, Nature.

[83]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  L. Stryer,et al.  Molecular mechanics of calcium–myristoyl switches , 1997, Nature.

[85]  P. Sieving,et al.  Retinopathy induced in mice by targeted disruption of the rhodopsin gene , 1997, Nature Genetics.

[86]  J. Corless,et al.  Three-dimensional membrane crystals in amphibian cone outer segments: 2. Crystal type associated with the saddle point regions of cone disks. , 1995, Experimental eye research.

[87]  L. Stryer,et al.  Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state , 1995, Nature.

[88]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[89]  P. Detwiler,et al.  Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein , 1994, Neuron.

[90]  P B Sigler,et al.  The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S. , 1994, Nature.

[91]  Heidi E. Hamm,et al.  Structural determinants for activation of the α-subunit of a heterotrimeric G protein , 1994, Nature.

[92]  Heidi E. Hamm,et al.  The 2.2 Å crystal structure of transducin-α complexed with GTPγS , 1993, Nature.

[93]  D. Bok,et al.  The retinal pigment epithelium: a versatile partner in vision , 1993, Journal of Cell Science.

[94]  T. Dryja,et al.  Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa , 1992, Neuron.

[95]  Prof. Dr. W. Kühne Chemical processes in the retina , 1977, Vision Research.

[96]  F. Daemen Vertebrate rod outer segment membranes. , 1973, Biochimica et biophysica acta.

[97]  A. Blaurock,et al.  Structure of Frog Photoreceptor Membranes , 1969, Nature.

[98]  George Wald,et al.  Tautomeric Forms of Metarhodopsin , 1963, The Journal of general physiology.

[99]  K. Pitzer,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. , 1960 .

[100]  W. Snodgrass Physiology , 1897, Nature.

[101]  C. Walker Ophthalmology , 1859, Bristol medico-chirurgical journal.

[102]  D. Bok,et al.  Practical Remarks on Gout, Rheumatic Fever, and Chonic Rheumatism of the Joints; Being the Substance of the Croonian Lectures for the Present Year, Delivered at the College of Physicians , 1844, Edinburgh Medical and Surgical Journal.

[103]  N. Misawa,et al.  A novel carotenoid biosynthesis gene coding for ζ-carotene desaturase: functional expression, sequence and phylogenetic origin , 2004, Plant Molecular Biology.

[104]  Edward N Pugh,et al.  G proteins and phototransduction. , 2002, Annual review of physiology.

[105]  T M Mayhew,et al.  Photoreceptor number and outer segment disk membrane surface area in the retina of the rat: stereological data for whole organ and average photoreceptor cell , 1997, Journal of neurocytology.

[106]  G. Wald The molecular basis of visual excitation. , 1968, Nature.