Treatment of inorganic contaminants using permeable reactive barriers 1 1 Disclaimer: The U. S. Envi

[1]  D. Blowes,et al.  Long‐Term Performance of In Situ Reactive Barriers for Nitrate Remediation , 2000 .

[2]  D. Blowes,et al.  Geochemistry of a Permeable Reactive Barrier for Metals and Acid Mine Drainage , 1999 .

[3]  K. Mayer,et al.  A numerical model for multicomponent reactive transport in variably saturated porous media , 1999 .

[4]  L. Liang,et al.  Reductive precipitation of uranium(VI) by zero-valent iron , 1998 .

[5]  R. Gillham,et al.  Emplacement verification and long-term performance monitoring of a permeable reactive barrier at the USCG Support Center, Elizabeth City, North Carolina , 1998 .

[6]  D. Blowes,et al.  Laboratory Development of Permeable Reactive Mixtures for the Removal of Phosphorus from Onsite Wastewater Disposal Systems , 1998 .

[7]  David W. Blowes,et al.  Selection of Reactive Mixtures for Use in Permeable Reactive Walls for Treatment of Mine Drainage , 1998 .

[8]  L. Schipper,et al.  Nitrate Removal from Groundwater Using a Denitrification Wall Amended with Sawdust: Field Trial , 1998 .

[9]  D. Blowes,et al.  Porous Reactive Walls for the Prevention of Acid Mine Drainage: A Review , 1998 .

[10]  C. Amrhein The Use of XANES, STM, and XPS to Identify the Precipitation Products Formed during the Reaction of U, Cr, and Se with Zerovalent Iron , 1998 .

[11]  R. W. Gillham,et al.  In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater , 1997 .

[12]  D. Blowes,et al.  Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems , 1997 .

[13]  D. Blowes,et al.  In-Situ Remediation of Cr(VI)-Contaminated Groundwater Using Permeable Reactive Walls: Laboratory Studies , 1997 .

[14]  David W. Blowes,et al.  A Full‐Scale Porous Reactive Wall for Prevention of Acid Mine Drainage , 1997 .

[15]  D. Blowes,et al.  Products of Chromate Reduction on Proposed Subsurface Remediation Material , 1997 .

[16]  L. A. Desimone,et al.  A Nitrogen-Rich Septage-Effluent Plume in a Glacial Aquifer, Cape Cod, Massachusetts, February 1990 Through December 1992 , 1996 .

[17]  R. Puls,et al.  In situ remediation of ground water contaminated with chromate and chlorinated solvents using zero-valent iron: A field study , 1995 .

[18]  D. Sabatini,et al.  Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. , 1995, Environmental science & technology.

[19]  K. Cantrell,et al.  Zero-valent iron for the in situ remediation of selected metals in groundwater , 1995 .

[20]  John A. Cherry,et al.  In Situ Denitrification of Septic‐System Nitrate Using Reactive Porous Media Barriers: Field Trials , 1995 .

[21]  S. Morrison,et al.  Chemical barriers for controlling groundwater contamination , 1993 .

[22]  D. R. Trotter,et al.  TECHNETIUM-99 REMOVAL FROM PROCESS SOLUTIONS AND CONTAMINATED GROUNDWATER , 1993 .

[23]  S. Benson,et al.  Groundwater contamination at the Kesterson Reservoir, California: 2. Geochemical parameters influencing selenium mobility , 1991 .

[24]  C. Palmer,et al.  Processes affecting the remediation of chromium-contaminated sites. , 1991, Environmental health perspectives.

[25]  N. Dubrovsky,et al.  Geochemical relations and distribution of selected trace elements in ground water of the northern part of the western San Joaquin Valley, California , 1991 .

[26]  W. D. Bostick,et al.  Treatment and disposal options for a heavy metals waste containing soluble Technetium-99 , 1989 .

[27]  D. McMurtry,et al.  New approach to in‐situ treatment of contaminated groundwaters , 1985 .

[28]  D. Schindler Evolution of phosphorus limitation in lakes. , 1977, Science.

[29]  Walter N. Heine,et al.  Treatment of Mine Drainage by Industry in Pennsylvania , 1970 .

[30]  A. Kappler,et al.  Geomicrobiology and Microbial Geochemistry DEVELOPMENT OF GEOMICROBIOLOGY AND MICROBIAL , 2022 .