Detecting behaviours in ecological models

Abstract Given an ecological model, I address the question of how to identify the different dynamical behaviours it can exhibit. This requires three steps: the discrimination of different behaviours, the detection of novel behaviours in the model space given current knowledge on model behaviour and the display of the results for visual inspection. I propose simple heuristic algorithms to carry out these steps in the case of models generating time series. I test the method on three models of increasing complexity, analysing both local and global structures in the time series and demonstrating the flexibility of the approach.

[1]  Cosma Rohilla Shalizi,et al.  Blind Construction of Optimal Nonlinear Recursive Predictors for Discrete Sequences , 2004, UAI.

[2]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[3]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[4]  A. M. Edwards,et al.  Zooplankton mortality and the dynamical behaviour of plankton population models , 1999, Bulletin of mathematical biology.

[5]  Fabio Boschetti,et al.  Controlling and investigating cellular automaton behavior via interactive inversion and visualization of the search space , 2009, New Generation Computing.

[6]  Stephen P. Ellner,et al.  When can noise induce chaos and why does it matter: a critique , 2005 .

[7]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[8]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[9]  F. Boschetti,et al.  Inversion of seismic refraction data using genetic algorithms , 1996 .

[10]  F. Boschetti,et al.  Interactive inverse methodology applied to stratigraphic forward modelling , 2004, Geological Society, London, Special Publications.

[11]  J. Crutchfield,et al.  Structural information in two-dimensional patterns: entropy convergence and excess entropy. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Asok Ray,et al.  Symbolic dynamic analysis of complex systems for anomaly detection , 2004, Signal Process..

[13]  F. Takens Detecting strange attractors in turbulence , 1981 .

[14]  Fabio Boschetti,et al.  Mapping the complexity of ecological models , 2008 .

[15]  Matthew B Kennel,et al.  Estimating good discrete partitions from observed data: symbolic false nearest neighbors. , 2003, Physical review letters.

[16]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[17]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[18]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[19]  Louis Moresi,et al.  Effective exploration and visualization of geological parameter space , 2003 .

[20]  F. Boschetti,et al.  Inverse modelling in geology by interactive evolutionary computation , 2003 .

[21]  Melanie Mitchell,et al.  What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation , 1993, Machine Learning.

[22]  Elizabeth A. Fulton,et al.  Interactive modelling for natural resource management , 2010, Environ. Model. Softw..

[23]  Robert Haslinger,et al.  Quantifying self-organization with optimal predictors. , 2004, Physical review letters.