Wave function methods for canonical ensemble thermal averages in correlated many-fermion systems.

We present a wave function representation for the canonical ensemble thermal density matrix by projecting the thermofield double state against the desired number of particles. The resulting canonical thermal state obeys an imaginary-time evolution equation. Starting with the mean-field approximation, where the canonical thermal state becomes an antisymmetrized geminal power (AGP) wave function, we explore two different schemes to add correlation: by number-projecting a correlated grand-canonical thermal state and by adding correlation to the number-projected mean-field state. As benchmark examples, we use number-projected configuration interaction and an AGP-based perturbation theory to study the hydrogen molecule in a minimal basis and the six-site Hubbard model.

[1]  G. Scuseria,et al.  Geminal replacement models based on AGP. , 2020, Journal of chemical theory and computation.

[2]  B. Rubenstein,et al.  Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo. , 2020, Journal of chemical theory and computation.

[3]  Sai Kumar Ramadugu,et al.  Using density matrix quantum Monte Carlo for calculating exact-on-average energies for ab-initio Hamiltonians in a finite basis set. , 2019, Journal of chemical theory and computation.

[4]  S. Hirata,et al.  Finite-temperature many-body perturbation theory in the canonical ensemble. , 2019, Physical review. E.

[5]  G. Scuseria,et al.  Efficient evaluation of AGP reduced density matrices. , 2019, The Journal of chemical physics.

[6]  Thomas F. Miller,et al.  Real-time density-matrix coupled-cluster approach for closed and open systems at finite temperature. , 2019, The Journal of chemical physics.

[7]  G. Chan,et al.  Time-dependent coupled cluster theory on the Keldysh contour for non-equilibrium systems. , 2019, Journal of chemical theory and computation.

[8]  G. Scuseria,et al.  Thermofield theory for finite-temperature coupled cluster. , 2019, Journal of chemical theory and computation.

[9]  G. Scuseria,et al.  Geminal-based configuration interaction , 2019, The Journal of Chemical Physics.

[10]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[11]  G. Scuseria,et al.  Thermofield theory for finite-temperature quantum chemistry. , 2019, The Journal of chemical physics.

[12]  Shiwei Zhang,et al.  Finite-temperature auxiliary-field quantum Monte Carlo: Self-consistent constraint and systematic approach to low temperatures , 2018, Physical Review B.

[13]  G. Scuseria,et al.  Particle-number projected Bogoliubov-coupled-cluster theory: Application to the pairing Hamiltonian , 2018, Physical Review C.

[14]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[15]  G. Chan,et al.  A Time-Dependent Formulation of Coupled-Cluster Theory for Many-Fermion Systems at Finite Temperature. , 2018, Journal of chemical theory and computation.

[16]  Felix Hummel Finite Temperature Coupled Cluster Theories for Extended Systems. , 2018, Journal of chemical theory and computation.

[17]  Garnet Kin-Lic Chan,et al.  Time-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature. , 2018, Journal of chemical theory and computation.

[18]  Minsik Cho,et al.  Ab Initio Finite Temperature Auxiliary Field Quantum Monte Carlo. , 2018, Journal of chemical theory and computation.

[19]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[20]  Jun Ye,et al.  Cold molecules: Progress in quantum engineering of chemistry and quantum matter , 2017, Science.

[21]  G. Scuseria,et al.  Projected coupled cluster theory. , 2017, The Journal of chemical physics.

[22]  Gustavo E. Scuseria,et al.  Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian , 2017, 1703.02123.

[23]  T. Barthel,et al.  Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles , 2017, 1701.03872.

[24]  B. Clark,et al.  Finite-temperature properties of strongly correlated systems via variational Monte Carlo , 2016, 1612.05260.

[25]  Thomas M Henderson,et al.  Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian. , 2016, The Journal of chemical physics.

[26]  R. Santra,et al.  Finite-temperature second-order many-body perturbation theory revisited , 2016, 1609.00492.

[27]  Emanuel Gull,et al.  Finite temperature quantum embedding theories for correlated systems , 2016, 1611.00395.

[28]  N. Balakrishnan Perspective: Ultracold molecules and the dawn of cold controlled chemistry. , 2016, The Journal of chemical physics.

[29]  Gustavo E. Scuseria,et al.  Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian , 2015, 1512.06111.

[30]  S. Ten-no,et al.  Communication: Configuration interaction combined with spin-projection for strongly correlated molecular electronic structures. , 2015, The Journal of chemical physics.

[31]  Y. Yamaji,et al.  Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems , 2015, 1510.05352.

[32]  G. Alvarez,et al.  Symmetry-conserving purification of quantum states within the density matrix renormalization group , 2015, 1508.06536.

[33]  T. Duguet,et al.  Symmetry broken and restored coupled-cluster theory. II. Global gauge symmetry and particle number , 2015, 1512.02878.

[34]  S. Hirata,et al.  Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves. , 2015, The Journal of chemical physics.

[35]  W. Magnus,et al.  Quantum canonical ensemble: a projection operator approach , 2015, 1505.04923.

[36]  R. Fazio,et al.  Localized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model. , 2015, Physical review letters.

[37]  M. Bonitz,et al.  Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature. , 2015, Physical review letters.

[38]  Gaute Hagen,et al.  Ab initio Bogoliubov coupled cluster theory for open-shell nuclei , 2014, 1412.2696.

[39]  C. Beenakker,et al.  Many-body characterization of topological superconductivity: The Richardson-Gaudin-Kitaev chain , 2014, 1407.3793.

[40]  T. Duguet Symmetry broken and restored coupled-cluster theory I. Rotational symmetry and angular momentum , 2014, 1406.7183.

[41]  Gustavo E. Scuseria,et al.  Quasiparticle Coupled Cluster Theory for Pairing Interactions , 2014, 1403.6818.

[42]  Michael A. Saunders,et al.  Algorithm 937: MINRES-QLP for symmetric and Hermitian linear equations and least-squares problems , 2013, TOMS.

[43]  D. Reichman,et al.  Finite-temperature auxiliary-field quantum Monte Carlo technique for Bose-Fermi mixtures , 2012, 1209.0186.

[44]  P. Zoller,et al.  Topology by dissipation in atomic quantum wires , 2011, 1105.5947.

[45]  E K U Gross,et al.  Exact conditions in finite-temperature density-functional theory. , 2010, Physical review letters.

[46]  Michael A. Saunders,et al.  MINRES-QLP: A Krylov Subspace Method for Indefinite or Singular Symmetric Systems , 2010, SIAM J. Sci. Comput..

[47]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[48]  M. Gelin,et al.  Calculations of canonical averages from the grand canonical ensemble. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  H. Nakada,et al.  New Bardeen-Cooper-Schrieffer-type theory at finite temperature with particle-number conservation , 2006, quant-ph/0603113.

[50]  S. White,et al.  Finite-temperature density matrix renormalization using an enlarged Hilbert space , 2005, cond-mat/0510124.

[51]  H. Nakada,et al.  Effects of particle-number conservation on heat capacity of nuclei , 2005, nucl-th/0503066.

[52]  H. Nakada,et al.  Quantum number projection at finite temperature via thermofield dynamics , 2004, nucl-th/0410054.

[53]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[54]  D. Mukherjee,et al.  a Finite-Temperature Generalisation of the Coupled Cluster Method: , 2003 .

[55]  B. Militzer,et al.  Path integral monte carlo calculation of the deuterium hugoniot , 2000, Physical review letters.

[56]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[57]  Shiwei Zhang FINITE-TEMPERATURE MONTE CARLO CALCULATIONS FOR SYSTEMS WITH FERMIONS , 1999, cond-mat/9909091.

[58]  G. Falci,et al.  SMALL SUPERCONDUCTING GRAIN IN THE CANONICAL ENSEMBLE , 1998, cond-mat/9801179.

[59]  Sanyal,et al.  Systematic nonperturbative approach for thermal averages in quantum many-body systems: The thermal-cluster-cumulant method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  D. Mukherjee,et al.  Thermal averaging in quantum many-body systems: a non-perturbative thermal cluster cumulant approach , 1992 .

[61]  T. Evans,et al.  Heisenberg and interaction representations in thermo field dynamics , 1992 .

[62]  N. Handy,et al.  Spin contamination in single-determinant wavefunctions , 1991 .

[63]  H. Umezawa Methods of Quantum Field Theory in Condensed Matter Physics — New Perspectives, Extensions and Applications — , 1984 .

[64]  H. Matsumoto,et al.  Thermo Field Dynamics in Interaction Representation , 1983 .

[65]  H. Umezawa,et al.  Functional methods in thermofield dynamics: A real-time perturbation theory for quantum statistical mechanics , 1983 .

[66]  J. Sokoloff,et al.  Some consequences of the thermal Hartree-Fock approximation at zero temperature , 1967 .

[67]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[68]  N. Mermin STABILITY OF THE THERMAL HARTREE-FOCK APPROXIMATION , 1963 .

[69]  B. Bayman A derivation of the pairing-correlation method , 1960 .

[70]  R. Peierls,et al.  THE COLLECTIVE MODEL OF NUCLEAR MOTION , 1957 .

[71]  T. Matsubara A New Approach to Quantum-Statistical Mechanics , 1955 .