Oxygen vacancies confined in hierarchically porous CsPbBr3@Pb-MOF through in situ structural transformation for promoting photocatalytic CO2 reduction

Via in situ structural transformation, hydrophobic hierarchically porous CsPbBr3@Pb-MOF with oxygen vacancies is prepared for efficient photoreduction of CO2 in the gas–solid mode.

[1]  Hai‐Long Jiang,et al.  Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction. , 2023, Angewandte Chemie.

[2]  Zhengquan Li,et al.  Rational Design of Metal Halide Perovskite Nanocrystals for Photocatalytic CO2 Reduction: Recent Advances, Challenges, and Prospects , 2022, ACS Energy Letters.

[3]  P. Kamat,et al.  Efficacy of Perovskite Photocatalysis: Challenges to Overcome , 2022, ACS Energy Letters.

[4]  Qiang-bing Wang,et al.  Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO , 2022, Nature Communications.

[5]  C. H. Ng,et al.  Resolve Deep-Rooted Challenges of Halide Perovskite for Sustainable Energy Development and Environmental Remediation , 2022, Nano Energy.

[6]  A. Yu,et al.  Emerging Trends in Sustainable CO2‐Management Materials , 2022, Advanced materials.

[7]  L. Wang,et al.  Cesium Lead Halide Perovskite Nanocrystals Assembled in Metal‐Organic Frameworks for Stable Blue Light Emitting Diodes , 2022, Advanced science.

[8]  Bit Na Choi,et al.  An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr3 perovskite catalysts embedded in a porous copper scaffold , 2022, Chemical Engineering Journal.

[9]  Lei Cheng,et al.  2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation , 2021, Applied Catalysis B: Environmental.

[10]  Xiangeng Meng,et al.  Multicolor Random Lasers Based on Perovskite Quantum Dots Embedded in Intrinsic Pb–MOFs , 2021, The Journal of Physical Chemistry C.

[11]  Haitao Li,et al.  CO2 Dominated Bifunctional Catalytic Sites for Efficient Industrial Exhaust Conversion , 2021, Advanced Functional Materials.

[12]  Honghan Fei,et al.  Fabrication of Robust and Porous Lead Chloride-Based Metal-Organic Frameworks toward a Selective and Sensitive Smart NH3 Sensor. , 2021, ACS applied materials & interfaces.

[13]  G. Wiederrecht,et al.  Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks , 2021, Nature Photonics.

[14]  Jihong Yu,et al.  Perovskite Quantum Dots Encapsulated in a Mesoporous Metal-Organic Framework as Synergistic Photocathode Materials. , 2021, Journal of the American Chemical Society.

[15]  Hai‐Long Jiang,et al.  Large-Scale Production of Hierarchically Porous Metal–Organic Frameworks by a Reflux-Assisted Post-Synthetic Ligand Substitution Strategy , 2021, ACS central science.

[16]  Donghai Mei,et al.  Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4 , 2021, Nature Catalysis.

[17]  Weiqing Yang,et al.  Cryogenic‐Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light‐Emitting Diodes , 2021, Advanced Optical Materials.

[18]  Q. Zhong,et al.  Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer , 2021 .

[19]  W. Liu,et al.  Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures , 2021 .

[20]  W. Xiang,et al.  One‐Pot Synthesis of CsPbX3 (X = Cl, Br, I)@Zeolite: A Potential Material for Wide‐Color‐Gamut Backlit Displays and Upconversion Emission , 2021, Advanced Optical Materials.

[21]  N. Yao,et al.  Highly Stable CsPbBr3 Colloidal Nanocrystal Clusters as Photocatalysts in Polar Solvents. , 2021, ACS applied materials & interfaces.

[22]  Y. Leng,et al.  Stable and low-threshold whispering-gallery-mode lasing from modified CsPbBr3 perovskite quantum dots@SiO2 sphere , 2020 .

[23]  J. D. de Mello,et al.  Metal Halide Perovskite@Metal-Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. , 2020, Small.

[24]  A. Cheetham,et al.  Intermarriage of Halide Perovskites and Metal‐Organic Framework Crystals , 2020, Angewandte Chemie.

[25]  Wanbin Li,et al.  Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability , 2020, Angewandte Chemie.

[26]  Xiujian Zhao,et al.  Pb‐Based Halide Perovskites: Recent Advances in Photo(electro)catalytic Applications and Looking Beyond , 2020, Advanced Functional Materials.

[27]  M. Roeffaers,et al.  Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance , 2020 .

[28]  Xudong Wang,et al.  All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic CO2 Reduction , 2020, Chem.

[29]  K. Pan,et al.  Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance , 2020 .

[30]  Yanyan Zhao,et al.  Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation , 2020 .

[31]  Fengjia Fan,et al.  Reversible 3D laser printing of perovskite quantum dots inside a transparent medium , 2020, Nature Photonics.

[32]  Jiang Liu,et al.  Semiconductor-Covalent Organic Framework Z-scheme Heterojunctions for Artificial Photosynthesis. , 2020, Angewandte Chemie.

[33]  Jian‐Rong Li,et al.  Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications , 2020, Advanced science.

[34]  Liang Feng,et al.  Hierarchically porous metal–organic frameworks: synthetic strategies and applications , 2019, National science review.

[35]  T. Tan,et al.  Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. , 2019, Small.

[36]  Qian Cao,et al.  Three‐Phase Photocatalysis for the Enhanced Selectivity and Activity of CO2 Reduction on a Hydrophobic Surface , 2019, Angewandte Chemie.

[37]  Tongbu Lu,et al.  Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. , 2019, Angewandte Chemie.

[38]  Honghan Fei,et al.  Intrinsic White-Light-Emitting Metal-Organic Frameworks with Structurally Deformable Secondary Building Units. , 2019, Angewandte Chemie.

[39]  M. Otyepka,et al.  Hydrophobic Metal–Organic Frameworks , 2019, Advanced materials.

[40]  Ying Dai,et al.  Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light , 2019, Applied Catalysis B: Environmental.

[41]  L. Ding,et al.  Sn-doped CsPbBr3 QDs glasses with excellent stability and optical properties for WLED , 2019, Chemical Engineering Journal.

[42]  Aamod V. Desai,et al.  Ultrastable Luminescent Hybrid Bromide Perovskite@MOF Nanocomposites for the Degradation of Organic Pollutants in Water , 2019, ACS Applied Nano Materials.

[43]  Xiaolin Zhu,et al.  Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. , 2019, Journal of the American Chemical Society.

[44]  Yang-Fan Xu,et al.  Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction , 2018, ACS Energy Letters.

[45]  I. Mora‐Seró,et al.  Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. , 2018, The journal of physical chemistry letters.

[46]  Genevieve Saur,et al.  What Should We Make with CO2 and How Can We Make It , 2018 .

[47]  R. Scheidt,et al.  To Exchange or Not to Exchange. Suppressing Anion Exchange in Cesium Lead Halide Perovskites with PbSO4–Oleate Capping , 2018 .

[48]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[49]  Seo Yul Kim,et al.  Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake , 2018 .

[50]  Y. Leng,et al.  Enhanced Two‐Photon‐Pumped Emission from In Situ Synthesized Nonblinking CsPbBr3/SiO2 Nanocrystals with Excellent Stability , 2018 .

[51]  Liang Feng,et al.  Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks. , 2018, Journal of the American Chemical Society.

[52]  Wanbin Li,et al.  Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption , 2017, Nature Communications.

[53]  Licheng Sun,et al.  Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. , 2017, Chemistry.

[54]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[55]  Haiyang Li,et al.  Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging , 2017 .

[56]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[57]  Xiujian Zhao,et al.  Precipitation and Optical Properties of CsPbBr3 Quantum Dots in Phosphate Glasses , 2016 .

[58]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[59]  Xinsheng Peng,et al.  Hierarchical Mesoporous Metal-Organic Frameworks for Enhanced CO2 Capture. , 2015, Chemistry.

[60]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[61]  B. Pan,et al.  Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. , 2014, Journal of the American Chemical Society.

[62]  Yanxi Tan,et al.  Two Pb(II) dicarboxylates constructed by rigid terephthalate or flexible d(+)-camphorate with different 3D motif based on cooperative effect of steric hindrance of ligand and lone pair electrons , 2009 .

[63]  Jiaguo Yu,et al.  Product selectivity of photocatalytic CO2 reduction reactions , 2020 .

[64]  Z. Su,et al.  Enhanced CO2 photoreduction via tuning halides in perovskites , 2019, Journal of Catalysis.