Transcriptional responses to fatty acid are coordinated by combinatorial control

[1]  L. Kraal Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2009 .

[2]  Hanspeter Rottensteiner,et al.  The biochemistry of oleate induction: transcriptional upregulation and peroxisome proliferation. , 2006, Biochimica et biophysica acta.

[3]  J. Heitman,et al.  Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans , 2006, Eukaryotic Cell.

[4]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[5]  B. Turcotte,et al.  A Fungal Family of Transcriptional Regulators: the Zinc Cluster Proteins , 2006, Microbiology and Molecular Biology Reviews.

[6]  Kara Dolinski,et al.  Saccharomyces cerevisiae S288C genome annotation: a working hypothesis , 2006, Yeast.

[7]  Pedro de Atauri,et al.  Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast , 2006, Nature Genetics.

[8]  M. Sano,et al.  Regulatory dynamics of synthetic gene networks with positive feedback. , 2006, Journal of molecular biology.

[9]  Eric W. Deutsch,et al.  SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology , 2006, BMC Bioinformatics.

[10]  N. Bot,et al.  Fungi and animals may share a common ancestor to nuclear receptors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Hamid Bolouri,et al.  Expression and functional profiling reveal distinct gene classes involved in fatty acid metabolism , 2006, Molecular systems biology.

[12]  Peter Uetz,et al.  Transcriptional activators in yeast , 2006, Nucleic acids research.

[13]  L. Hood,et al.  A data integration methodology for systems biology: experimental verification. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Kwast,et al.  Dynamical Remodeling of the Transcriptome during Short-Term Anaerobiosis in Saccharomyces cerevisiae: Differential Response and Role of Msn2 and/or Msn4 and Other Factors in Galactose and Glucose Media , 2005, Molecular and Cellular Biology.

[15]  Tong Ihn Lee,et al.  Combined Global Localization Analysis and Transcriptome Data Identify Genes That Are Directly Coregulated by Adr1 and Cat8 , 2005, Molecular and Cellular Biology.

[16]  Indrani Bose,et al.  Noise characteristics of feed forward loops , 2004, Physical biology.

[17]  Hamid Bolouri,et al.  Control of internal and external noise in genetic regulatory networks. , 2004, Journal of theoretical biology.

[18]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[19]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[20]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  F. Giostra,et al.  Methods and Results , 2014 .

[22]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[23]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Ruis,et al.  Saccharomyces cerevisiae PIP2 Mediating Oleic Acid Induction and Peroxisome Proliferation Is Regulated by Adr1p and Pip2p-Oaf1p* , 2003, Journal of Biological Chemistry.

[25]  Trey Ideker,et al.  Multiple Pathways Are Co-regulated by the Protein Kinase Snf1 and the Transcription Factors Adr1 and Cat8* , 2003, Journal of Biological Chemistry.

[26]  H. Ruis,et al.  Saccharomyces cerevisiae Pip2p-Oaf1p regulates PEX25 transcription through an adenine-less ORE. , 2003, European journal of biochemistry.

[27]  Hans-Joachim Schüller,et al.  Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae , 2003, Current Genetics.

[28]  M. G. Koerkamp,et al.  Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. , 2002, Molecular biology of the cell.

[29]  Trey Ideker,et al.  Transcriptome profiling to identify genes involved in peroxisome assembly and function , 2002, The Journal of cell biology.

[30]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[31]  U. Himmelreich,et al.  Cas1p is a membrane protein necessary for the O‐acetylation of the Cryptococcus neoformans capsular polysaccharide , 2001, Molecular microbiology.

[32]  J. Hiltunen,et al.  Saccharomyces cerevisiae Adr1p Governs Fatty Acid β-Oxidation and Peroxisome Proliferation by RegulatingPOX1 and PEX11 * , 2001, The Journal of Biological Chemistry.

[33]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[34]  Varshal K. Davé,et al.  Genome-wide responses to mitochondrial dysfunction. , 2001, Molecular biology of the cell.

[35]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[36]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[37]  M. Piskacek,et al.  Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. , 1999, The Journal of biological chemistry.

[38]  M. Carlson,et al.  Glucose repression in yeast. , 1999, Current opinion in microbiology.

[39]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[40]  G. Blobel,et al.  Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p , 1995, The Journal of cell biology.

[41]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[42]  D. Gifford,et al.  Sequence analysis A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data , 2006 .

[43]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[44]  Trey Ideker,et al.  Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data , 2000, J. Comput. Biol..

[45]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[46]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .