All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central parameters of laser ion acceleration such as the hot-electron density, the temperature distribution and the conversion efficiency from laser pulse energy into hot electrons become comprehensively accessible with this technique.

[1]  Donald P. Umstadter,et al.  Physics and Applications of Relativistic Plasmas Driven by Ultra-intense Lasers , 2001 .

[2]  Theo Neger,et al.  Digital evaluation of interferograms , 2004 .

[3]  C Andersen,et al.  Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. , 2002, Physical review letters.

[4]  Mark Sherlock,et al.  Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition , 2007 .

[5]  K. Mima,et al.  Collimated Electron Jets by Intense Laser-Beam-Plasma Surface Interaction under Oblique Incidence , 1998, physics/9807021.

[6]  Jean-Claude Kieffer,et al.  Hard x-ray emission in high intensity femtosecond laser–target interaction , 1999 .

[7]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[8]  Patrick Audebert,et al.  Ultrafast Laser-Driven Microlens to Focus and Energy-Select Mega-Electron Volt Protons , 2006, Science.

[9]  T. Sokollik,et al.  Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. , 2006, Physical review letters.

[10]  D. Neely,et al.  MULTI-MEV ION PRODUCTION FROM HIGH-INTENSITY LASER INTERACTIONS WITH UNDERDENSE PLASMAS , 1999 .

[11]  S Meyroneinc,et al.  Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. , 2004, Physical review letters.

[12]  D. H. Campbell,et al.  Laser-produced protons and their application as a particle probe , 2002 .

[13]  S R Nagel,et al.  Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. , 2009, Physical review letters.

[14]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[15]  K Mima,et al.  Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. , 2002, Physical review letters.

[16]  D. Jaroszynski,et al.  Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. , 2006, Physical review letters.

[17]  D Neely,et al.  Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. , 2010, Physical review letters.

[18]  V. Tikhonchuk Interaction of a beam of fast electrons with solids , 2002 .

[19]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[20]  Clark,et al.  Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions , 2000, Physical review letters.

[21]  S. Pfotenhauer,et al.  A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams , 2010 .

[22]  K. Witte,et al.  Source-size measurements and charge distributions of ions accelerated from thin foils irradiated by high-intensity laser pulses , 2004 .

[23]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[24]  V. Tikhonchuk,et al.  Charge separation effects in solid targets and ion acceleration with a two-temperature electron distribution. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  C. Geddes,et al.  Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. , 2005, Physical review letters.

[26]  S. Wilks,et al.  Energetic Proton Generation in Ultra-Intense Laser-Solid Interactions , 2000 .

[27]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.

[28]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[29]  Zulfikar Najmudin,et al.  Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma. , 2006 .

[30]  K. Flippo,et al.  Laser acceleration of quasi-monoenergetic MeV ion beams , 2006, Nature.

[31]  Edward B. Clark,et al.  Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction. , 2004, Physical review letters.

[32]  A. Pukhov,et al.  Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. , 2001, Physical review letters.

[33]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[34]  P. Mora Thin-foil expansion into a vacuum. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[36]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[37]  T. Sokollik,et al.  Transient electric fields in laser plasmas observed by proton streak deflectometry , 2008, 0801.4003.

[38]  R. G. Evans,et al.  Radiation pressure acceleration of thin foils with circularly polarized laser pulses , 2007, 0708.2040.

[39]  J. Gauthier,et al.  High Intensity laser plasma interaction studies employing laser-driven proton probes , 2005 .

[40]  T. C. Sangster,et al.  Hot electron production and heating by hot electrons in fast ignitor research , 1998 .

[41]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[42]  K Nemoto,et al.  Laser ion acceleration via control of the near-critical density target. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  S. V. Bulanov,et al.  Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications , 2006 .

[44]  J. Meyer-ter-Vehn,et al.  Laser-driven fast-electron transport in preheated foil targets , 2005 .

[45]  D Kiefer,et al.  Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. , 2009, Physical review letters.

[46]  A. Nikroo,et al.  Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils , 2007 .

[47]  Vladimir T. Tikhonchuk,et al.  Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse , 2006 .

[48]  Paul Gibbon,et al.  Spectral shaping of laser generated proton beams , 2008 .

[49]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[50]  J. Allen,et al.  The expansion of a plasma into a vacuum , 1975, Journal of Plasma Physics.

[51]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[52]  K. Bowers,et al.  Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets. , 2006, Physical review letters.

[53]  J. Meyer-ter-Vehn,et al.  Influence of the laser prepulse on proton acceleration in thin-foil experiments. , 2004, Physical review letters.

[54]  O Willi,et al.  Dynamics of electric fields driving the laser acceleration of multi-MeV protons. , 2005, Physical review letters.

[55]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .